Bell me differentiate me!

Calculus Level 3

n = 2 n 7 + n 6 + n 5 + n 4 + n 3 + n 2 + n + 1 ( n 2 ) ! = A e \sum_{n=2}^{\infty} \dfrac{n^7+n^6+n^5+n^4+n^3+n^2+n+1}{(n-2)!} = Ae

Find positive integer A A which satisfies the equation above.


This problem was proposed by Artan Ajredini in Romanian Mathematical Magazine


For more problems you may wish to visit my set RMM


The answer is 21146.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 24, 2018

Relevant wiki: Bell Numbers

Similar solution with @Naren Bhandari's

S = n = 2 n 7 + n 6 + n 5 + n 4 + n 3 + n 2 + n + 1 ( n 2 ) ! = n = 0 ( n + 2 ) 7 + ( n + 2 ) 6 + ( n + 2 ) 5 + ( n + 2 ) 4 + ( n + 2 ) 3 + ( n + 2 ) 2 + n + 2 + 1 n ! = n = 0 n 7 + 15 n 6 + 97 n 5 + 351 n 4 + 769 n 3 + 1023 n 2 + 769 n + 255 n ! Bell number B n = 1 e k = 0 k n k ! = B 7 e + 15 B 6 e + 97 B 5 e + 351 B 4 e + 769 B 3 e + 1023 B 2 e + 769 B 1 e + 255 B 0 e = ( 877 + 15 ( 203 ) + 97 ( 52 ) + 351 ( 15 ) + 769 ( 5 ) + 1023 ( 2 ) + 769 ( 1 ) + 255 ( 1 ) ) e = 21146 e \begin{aligned} S & = \sum_{\color{#3D99F6}n=2}^\infty \frac {n^7+n^6+n^5+n^4+n^3+n^2+n+1}{(n-2)!} \\ & = \sum_{\color{#D61F06}n=0}^\infty \frac {(n+2)^7+(n+2)^6+(n+2)^5+(n+2)^4+(n+2)^3+(n+2)^2+n+2+1}{n!} \\ & = \sum_{n=0}^\infty \frac {n^7 + 15n^6 + 97n^5 + 351n^4 + 769n^3 + 1023n^2 + 769n + 255}{n!} & \small \color{#3D99F6} \because \text{ Bell number }B_n = \frac 1e \sum_{k=0}^\infty \frac {k^n}{k!} \\ & = B_7e + 15B_6e + 97B_5e + 351B_4e + 769B_3e + 1023B_2e + 769B_1e + 255B_0e \\ & = \big(877 + 15(203) + 97(52) + 351(15) + 769(5) + 1023(2) + 769(1) + 255(1)\big)e \\ & = 21146 e \end{aligned}

Therefore, A = 21146 A = \boxed{21146} .

Naren Bhandari
Nov 24, 2018

Method 1 Given n = 2 ( n 7 + n 6 + n 5 + + n 2 + n + 1 ( n 2 ) ! ) \sum_{n=2}^{\infty} \left(\dfrac{n^7+n^6+n^5+\cdots+n^2+n+1}{(n-2)!}\right) Now multiplying and dividing by n ( n 1 ) n(n-1) we can deduce that n 7 + n 6 + n 5 + + n 2 + n + 1 ( n 2 ) ! = n 9 n ! n n ! \dfrac{n^7+n^6+n^5+\cdots+n^2 +n+1}{(n-2)!} =\dfrac{n^9}{n!} -\dfrac{n}{n!} Hence our sum become S = n = 1 ( n 9 n ! n n ! ) = B 9 e B 1 e = 21146 e S = \sum_{n=1}^{\infty} \left(\dfrac{n^9}{n!} -\dfrac{n}{n!} \right) = B_9 e - B_1e = 21146e where B 9 , B 1 B_9,B_1 are ninth and first Bells numbers.

Note: We have that j = 0 x j j ! = B n e B 0 = 1 e j = 0 = 1 \sum_{j=0}^{\infty}\dfrac{x^j}{j!}= B_n e\implies B_0 = \dfrac{1}{e}\sum_{j=0}^{\infty}=1 where B n B_n is the nth Bells numbers where n Z 0 n\in\mathbb Z\geq 0 . Further the Bells numbers are generated by B n + 1 = k = 0 n B k ( n k ) B 1 = k = 0 0 B 0 ( 0 0 ) = 1 B_{n+1} = \sum_{k=0}^{n} B_k \binom{n}{k}\implies B_1 = \sum_{k=0}^{0}B_0\binom{0}{0} =1 Set n = 1 , 2 , 3 , , 8 n= 1 ,2, 3,\cdots ,8 B 2 = k = 0 1 B k ( 1 k ) = 1 + 1 = 2 B 3 = k = 0 2 B k ( 2 k ) = 1 + 3 + 1 = 5 B 4 = k = 0 3 B k ( 3 k ) = 1 + 6 + 7 + 1 = 15 B 5 = k = 0 4 B k ( 4 k ) = 1 + 10 + 25 + 15 + 1 = 52 B 6 = k = 0 5 B k ( 3 k ) = 1 + 15 + 65 + 90 + 31 + 1 = 203 B 7 = k = 0 6 B k ( 3 k ) = 1 + 21 + 140 + 350 + 301 + 63 + 1 = 877 B 8 = k = 0 7 B k ( 7 k ) = 1 + 28 + 266 + 1050 + 1701 + 966 + 127 + 1 = 41470 B 9 = k = 0 8 B k ( 8 k ) = 1 + 36 + 462 + 2646 + 6951 + 7770 + 3025 + 255 + 1 = 21147 \begin{aligned} B_{2} & = \sum_{k=0}^{1} B_k \binom{1}{k}=1+1 =2 \\ B_{3} & = \sum_{k=0}^{2} B_k \binom{2}{k}= 1+3+1 = 5\\ B_{4} & = \sum_{k=0}^{3} B_k \binom{3}{k} = 1+6+7+1 =15 \\ B_{5} & = \sum_{k=0}^{4} B_k \binom{4}{k} = 1+10+25+15+1=52 \\ B_{6} & = \sum_{k=0}^{5} B_k \binom{3}{k} = 1+15+65+90+31+1=203 \\ B_{7} & = \sum_{k=0}^{6} B_k \binom{3}{k} =1+21+140+350+301+63+1= 877 \\ B_{8} & = \sum_{k=0}^{7} B_k \binom{7} {k} = 1+28+266+1050+1701+966+127+1=41470 \\ B_{9} & = \sum_{k=0}^{8} B_k \binom{8}{k} = 1+36+462+2646+6951+7770+3025+255+1=21147\end{aligned}

Method 2

Given n = 2 ( n 7 + n 6 + n 5 + + n 2 + n + 1 ( n 2 ) ! ) \sum_{n=2}^{\infty} \left(\dfrac{n^7+n^6+n^5+\cdots+n^2+n+1}{(n-2)!}\right) Now multiplying and dividing by n ( n 1 ) n(n-1) we can deduce that n 7 + n 6 + n 5 + + n 2 + n + 1 ( n 2 ) ! = n 9 n ! n n \dfrac{n^7+n^6+n^5+\cdots+n^2 +n+1}{(n-2)!} =\dfrac{n^9}{n!} -\dfrac{n}{n} Hence our sum become S = n = 1 ( n 9 n ! n n ! ) = n = 1 n 9 n ! e = 21147 e e = 21146 e S = \sum_{n=1}^{\infty} \left(\dfrac{n^9}{n!} -\dfrac{n}{n!} \right) =\sum_{n=1}^{\infty} \dfrac{n^9}{n!} - e =21147e-e =21146e To determine the n = 1 n 9 n ! = 221147 e \sum_{n=1}^{\infty} \dfrac{n^9}{n!}=221147e we will be using following technique .Since k = 0 x k k ! = e x \sum_{k=0}^{\infty}\dfrac{x^k}{k!} =e^x Now we perform differentiation with respect to x and multiply by x x after each differentiation as k = 0 k x k 1 k ! = e x k = 0 k x k k ! = x e x k = 0 k 2 x k 1 k ! = ( x + 1 ) e x k = 0 k 3 x k 1 k ! = ( x 2 + 3 x + 1 ) e x k = 0 k 4 x k 1 k ! = ( x 3 + 6 x 2 + 7 x + 1 ) e x k = 0 k 5 x k 1 k ! = ( x 4 + 10 x 3 + 25 x 2 + 15 x + 1 ) e x k = 0 k 6 x k 1 k ! = ( x 5 + 15 x 4 + 65 x 3 + 90 x 2 + 31 x + 1 ) e x k = 0 k 7 x k 1 k ! = ( x 6 + 21 x 5 + 140 x 4 + 350 x 3 + 301 x 2 + 63 x + 1 ) e x k = 0 k 8 x k 1 k ! = ( x 7 + 28 x 6 + 266 x 5 + 1050 x 4 + 1701 x 3 + 966 x 2 + 127 x + 1 ) e x k = 0 k 9 x k 1 k ! = ( x 8 + 36 x 7 + 462 x 6 + 2646 x 5 + 6951 x 4 + 7770 x 3 + 3025 x 2 + 255 x + 1 ) e x \begin{aligned} \sum_{k=0}^{\infty}\dfrac{k\cdot x^{k-1}}{k!} & =e^x\implies \sum_{k=0}^{\infty}\dfrac{k\cdot x^{k}}{k!} = xe^x \\ \sum_{k=0}^{\infty}\dfrac{k^2\cdot x^{k-1}}{k!} & =( x+ 1)e^x\\ \sum_{k=0}^{\infty}\dfrac{k^3\cdot x^{k-1}}{k!} &=( x^2+3x+ 1)e^x\\ \sum_{k=0}^{\infty}\dfrac{k^4\cdot x^{k-1}}{k!} & =(x^3 + 6x^2 +7x + 1)e^x\\ \sum_{k=0}^{\infty}\dfrac{k^5\cdot x^{k-1}}{k!} &= (x^4+ 10x^3+25x^2+15x+1)e^x\\ \sum_{k=0}^{\infty}\dfrac{k^6\cdot x^{k-1}}{k!} & = (x^5+15x^4+65x^3+ 90x^2+ 31x+ 1)e^x\\ \sum_{k=0}^{\infty}\dfrac{k^7\cdot x^{k-1}}{k!} &=( x^6+21x^5+ 140x^4+ 350x^3+ 301x^2+ 63x+ 1)e^x\\ \sum_{k=0}^{\infty}\dfrac{k^8\cdot x^{k-1}}{k!}& =(x^7 + 28x^6+266x^5 +1050x^4+1701x^3+966x^2+127x+1)e^x\\ \sum_{k=0}^{\infty}\dfrac{k^9\cdot x^{k-1}}{k!} &=(x^8+36x^7+462x^6+2646x^5+6951x^4+7770x^3+3025x^2+255x+1)e^x\end{aligned} Now setting x = 1 x=1 we obtain e , 2 e , 5 e , 15 e , 52 e , 203 e , 877 e , 4140 e , 21147 e e, 2e , 5e, 15e, 52e,203e, 877e, 4140e , 21147e .

Your problem has a typo: . . . n 3 + n + 2 + n + 1 ...n^3+n+2+n+1

X X - 2 years, 6 months ago

Log in to reply

Thank you. I have edited it.

Naren Bhandari - 2 years, 6 months ago

Not a good problem. Too much emphasis on computation rather than using math theorem in this case the use of Bell numbers. This type of problem will not attract member to solve.

Chew-Seong Cheong - 2 years, 6 months ago

Log in to reply

Sorry Sir , next time I will keep in mind about it.

Naren Bhandari - 2 years, 6 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...