Belles intégrales

Calculus Level 5

1 { x } x 3 d x = a π 2 b 1 { x } 1 2 x d x = ln ( c π ) d \large \begin{aligned} \int_{1}^{\infty} \frac{\{x\}}{x^3} dx & =a-\frac{{\pi}^2}{b} \\ \int_{1}^{\infty} \frac{\{x\}-\frac{1}{2}}{x} dx & = \ln(\sqrt{c\pi})-d \end{aligned}

Integers a a , b b , c c and d d satisfy the respective equations above. Find a + b + c + d \sqrt{a+b+c+d} .

Notation: { } \{ \cdot \} denotes the fractional part function .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Sep 14, 2017

We have 1 { x } x 3 d x = n = 1 0 1 x ( n + x ) 3 d x = n = 1 0 1 ( 1 ( n + x ) 2 n ( n + x ) 3 ) d x = n = 1 [ 1 n + x + n 2 ( n + x ) 2 ] 0 1 = n = 1 ( 1 n 1 n + 1 + n 2 ( n + 1 ) 2 1 2 n ) = 1 2 n = 1 ( 1 n 1 n + 1 1 ( n + 1 ) 2 ) = 1 2 ( 1 + ( ζ ( 2 ) 1 ) ) = 1 1 12 π 2 \begin{aligned} \int_1^\infty \frac{\{x\}}{x^3}\,dx & = \; \sum_{n=1}^\infty \int_0^1 \frac{x}{(n+x)^3}\,dx \; = \; \sum_{n=1}^\infty \int_0^1 \left( \frac{1}{(n+x)^2} - \frac{n}{(n+x)^3}\right)\,dx \\ & = \; \sum_{n=1}^\infty \Big[-\frac{1}{n+x} + \frac{n}{2(n+x)^2} \Big]_0^1 \; = \; \sum_{n=1}^\infty \left(\frac{1}{n} - \frac{1}{n+1} + \frac{n}{2(n+1)^2} - \frac{1}{2n}\right) \\ & = \; \frac12\sum_{n=1}^\infty \left( \frac{1}{n} - \frac{1}{n+1} - \frac{1}{(n+1)^2}\right) \; = \; \frac12\big(1 + (\zeta(2) - 1)\big) \; = \; 1 - \tfrac{1}{12}\pi^2 \end{aligned} while 1 { x } 1 2 x d x = n = 1 0 1 x 1 2 n + x d x = n = 1 0 1 ( 1 n + 1 2 n + x ) d x = n = 1 [ x ( n + 1 2 ) ln ( n + x ) ] 0 1 = lim N n = 1 N ( 1 ( n + 1 2 ) ln ( n + 1 ) + ( n + 1 2 ) ln n ) = lim N { N ( N + 1 2 ) ln ( N + 1 ) + ln N ! } = lim N { ln ( e N N ! N N + 1 2 ) ( N + 1 2 ) ln ( 1 + 1 N ) } = ln 2 π 1 \begin{aligned} \int_1^\infty \frac{\{x\} - \frac12}{x}\,dx & = \; \sum_{n=1}^\infty \int_0^1 \frac{x-\frac12}{n+x}\,dx \; = \; \sum_{n=1}^\infty \int_0^1 \left(1 - \frac{n+\frac12}{n+x}\right)\,dx \\ & = \; \sum_{n=1}^\infty \Big[x - (n+\tfrac12)\ln(n+x)\Big]_0^1 \; = \; \lim_{N \to \infty}\sum_{n=1}^N\left(1 - (n+\tfrac12)\ln(n+1) + (n+\tfrac12)\ln n\right) \\ & = \; \lim_{N\to\infty}\left\{ N - (N+\tfrac12)\ln(N+1) + \ln N! \right\} \; = \; \lim_{N \to \infty} \left\{ \ln\left(\frac{e^N N!}{N^{N+\frac12}}\right) - (N+\tfrac12)\ln\left(1 + \tfrac{1}{N}\right) \right\} \\ & = \; \ln\sqrt{2\pi} - 1 \end{aligned} using Stirling's Approximation and the result that ( 1 + 1 n ) n e \big(1 + \tfrac{1}{n}\big)^n \to e as n n \to \infty . Thus the answer is 1 + 12 + 2 + 1 = 4 \sqrt{1+12+2+1} = \boxed{4} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...