Bërn's Constant

Calculus Level 4

Let s n = ( i = 1 n sin ( i n ) ) 1 n s_n= \left(\prod_{i=1}^n \sqrt{ \sin \left(\frac{i}{n}\right)}\right)^{\frac{1}{n}} Find lim n 1 s n . \left\lfloor\lim_{n\to\infty}\frac{1}{s_n}\right\rfloor.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Daniel Xiang
Feb 14, 2018

Taking logorithms we get

ln s n = 1 n ln i = 1 n sin i n = 1 2 n i = 1 n ln sin i n \displaystyle \ln s_n = \frac{1}{n}\ln\prod_{i=1}^n\sqrt{\sin\frac{i}{n}}=\frac{1}{2n}\sum_{i=1}^n\ln\sin\frac{i}{n}

we know from the definition of definite integrals that

0 1 f ( x ) d x = lim n 1 n i = 1 n f ( i n ) \displaystyle \int_0^1f(x)\mathrm dx=\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{i=1}^n f\left(\frac{i}{n}\right)

so

lim n ln s n = 1 2 0 1 ln sin x d x \displaystyle \lim_{n\rightarrow\infty} \ln s_n = \frac{1}{2}\int_0^1\ln\sin x\mathrm dx

This integral is difficult, so I decided to solve it numerically

Mathematica outputs that 0 1 ln sin x d x 1.056720206 \displaystyle \int_0^1\ln\sin x\mathrm dx \approx -1.056720206

and finally,

lim n 1 s n = e lim ln s n = e 1 2 1.056720206 1.69614 \displaystyle \lim_{n\rightarrow\infty} \frac{1}{s_n} = e^{ - \lim \ln s_n} = e^{ \frac{1}{2} 1.056720206} \approx 1.69614

we obtain 1.69614 = 1 \left\lfloor 1.69614 \right\rfloor = \boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...