Bern's Integral

Calculus Level 4

Let A = 1 2 ln 2 ( x + x 2 1 ) d x \large A=\int_1^2 \ln^2 \left(x+\sqrt{x^2-1}\right) dx Find 1000 A \lfloor 1000A \rfloor .


The answer is 906.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 23, 2017

A = 1 2 ln 2 ( x + x 2 1 ) d x Let u = x 2 1 d u = x x 2 1 d x = 0 3 u ln 2 ( u 2 + 1 + u ) u 2 + 1 d u By integration by parts. = u 2 + 1 ln 2 ( u 2 + 1 + u ) 0 3 2 0 3 ln ( u 2 + 1 + u ) d u Repeat integration by parts. = 2 ln 2 ( 2 + 3 ) 2 u ln ( u 2 + 1 + u ) 0 3 + 2 0 3 u u 2 + 1 d u = 2 ln 2 ( 2 + 3 ) 2 3 ln ( 2 + 3 ) + 2 u 2 + 1 0 3 = 2 ln 2 ( 2 + 3 ) 2 3 ln ( 2 + 3 ) + 2 ( 2 1 ) 0.906680227 \begin{aligned} A & = \int_1^2 \ln^2 \left(x+\sqrt{x^2-1}\right) dx & \small \color{#3D99F6} \text{Let }u = \sqrt{x^2-1} \implies du = \frac x{\sqrt{x^2-1}} dx \\ & = \int_0^{\sqrt 3} \frac {u\ln^2 \left(\sqrt{u^2+1} +u\right)}{\sqrt{u^2+1}} du & \small \color{#3D99F6} \text{By integration by parts.} \\ & = \sqrt{u^2+1}\ln^2 \left(\sqrt{u^2+1} +u\right) \bigg|_0^{\sqrt 3} - 2 \int_0^{\sqrt 3} \ln \left(\sqrt{u^2+1} +u\right) du & \small \color{#3D99F6} \text{Repeat integration by parts.} \\ & = 2 \ln^2 \left(2+\sqrt 3\right) - 2u \ln \left(\sqrt{u^2+1} +u\right) \bigg|_0^{\sqrt 3} + 2 \int_0^{\sqrt 3} \frac u{\sqrt{u^2+1}} du \\ & = 2 \ln^2 \left(2+\sqrt 3\right) - 2\sqrt 3 \ln \left(2+\sqrt 3\right) + 2 \sqrt{u^2+1} \bigg|_0^{\sqrt 3} \\ & = 2 \ln^2 \left(2+\sqrt 3\right) - 2\sqrt 3 \ln \left(2+\sqrt 3\right) + 2 (2-1) \\ & \approx 0.906680227 \end{aligned}

1000 A = 906 \implies \lfloor 1000A \rfloor = \boxed{906}

@Chew-Seong Cheong Excellent solution! Another way to do this question is to substitute u = cosh x u = \cosh x instead, as ln ( x + x 2 1 ) \ln(x + \sqrt{x^2-1}) is the inverse function of cosh x \cosh x

John Frank - 3 years, 1 month ago

Log in to reply

Why don't you submit a solution?

Chew-Seong Cheong - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...