Bern's logarithm

Calculus Level 4

Let

s = 3 5 log 16 ( x 4 ) 2 ( x 3 ) d x \large s=\int_3^5\log_{16-(x-4)^2}(x^3)\ dx

Find 7 s 7s .


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 27, 2017

s = 3 5 log 16 ( x 4 ) 2 ( x 3 ) d x Note that log a x = log x log a = 3 5 3 ln x ln ( 16 ( x 2 8 x + 16 ) ) d x = 3 3 5 ln x ln ( 8 x x 2 ) d x Note that log a b = log a + log b = 3 3 5 ln x ln x + ln ( 8 x ) d x Using identity a b f ( x ) d x = a b f ( a + b x ) d x = 3 2 3 5 ( ln x ln x + ln ( 8 x ) + ln ( 8 x ) ln ( 8 x ) + ln x ) d x = 3 2 3 5 d x = 3 2 x 3 5 = 3 \begin{aligned} s & = \int_3^5 \log_{16-(x-4)^2}(x^3) \ dx & \small \color{#3D99F6} \text{Note that }\log_a x = \frac {\log x}{\log a} \\ & = \int_3^5 \frac {3\ln x}{\ln (16-(x^2-8x+16))} \ dx \\ & = 3\int_3^5 \frac {\ln x}{\ln (8x-x^2)} \ dx & \small \color{#3D99F6} \text{Note that }\log_ab = \log a + \log b \\ & = 3\int_3^5 \frac {\ln x}{\ln x + \ln(8-x)} \ dx & \small \color{#3D99F6} \text{Using identity }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 32 \int_3^5 \left(\frac {\ln x}{\ln x + \ln(8-x)} + \frac {\ln (8-x)}{\ln (8-x) + \ln x} \right) dx \\ & = \frac 32 \int_3^5 \ dx = \frac 32 x \ \bigg|_3^5 = \boxed{3} \end{aligned}

Guilherme Niedu
Nov 26, 2017

s = 3 5 log 16 ( x 4 ) 2 ( x 3 ) d x \large \displaystyle s = \int_{3}^{5} \log_{16 - (x-4)^2} (x^3) dx

  • Since log a b = ln ( b ) ln ( a ) \color{#20A900} \displaystyle \log_a b = \frac{\ln(b)}{\ln(a)} :

s = 3 5 ln ( x 3 ) ln ( 8 x x 2 ) d x \large \displaystyle s = \int_{3}^{5} \frac{\ln(x^3)}{\ln(8x - x^2)}dx

s = 3 3 5 ln ( x ) ln ( 8 x ) + ln ( x ) d x \large \displaystyle s = 3 \int_{3}^{5} \frac{\ln(x)}{\ln(8 - x) + \ln(x)}dx

  • Since a b f ( x ) = a b f ( a + b x ) \color{#20A900} \displaystyle \int_a^b f(x) = \int_a^b f(a+b-x) :

s = 3 1 2 [ 3 5 ln ( x ) ln ( 8 x ) + ln ( x ) d x + 3 5 ln ( 8 x ) ln ( x ) + ln ( 8 x ) d x ] \large \displaystyle s = 3 \cdot \frac12 \left [ \int_{3}^{5} \frac{\ln(x)}{\ln(8-x) + \ln(x)}dx + \int_{3}^{5} \frac{\ln(8-x)}{\ln(x) + \ln(8-x)}dx \right ]

s = 3 1 2 [ 3 5 d x ] \large \displaystyle s = 3 \cdot \frac12 \left [ \int_{3}^{5} dx \right ]

s = 3 , 7 s = 21 \color{#3D99F6} \large \displaystyle s = 3, \boxed {\large \displaystyle 7s = 21}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...