Bessel again

Calculus Level 5

0 π / 2 ( 4 J 2 16 J 4 + 36 J 6 64 J 8 + J 1 9 J 3 + 25 J 5 49 J 7 + ) 2 / 3 d x = ? \int\limits_{0}^{\pi/2} \left( \frac{4J_{2}-16J_{4}+36J_{6}-64J_{8}+\ldots}{J_{1}-9J_{3}+25J_{5}-49J_{7}+\ldots}\right)^{2/3}\,\mathrm dx~=~?


Details and Clarifications :


The answer is 3.14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Emile Augustine
Jun 30, 2019

We begin by utilizing the following real-valued variation of the Jacobi-Anger expansion: \text {We begin by utilizing the following real-valued variation of the Jacobi-Anger expansion:}

\\[3mm] cos ( z cos ( θ ) ) = J 0 ( z ) + 2 n = 1 ( 1 ) n J 2 n ( z ) cos ( 2 n θ ) \cos(z\cos (\theta ))=J_{0}(z)+2\sum_{n=1}^{\infty}(-1)^nJ_{2n}(z)\cos(2n\theta)

\\[3mm] Taking the second partial derivative of both sides with respect to \text{Taking the second partial derivative of both sides with respect to} θ \theta , and dividing by 2 on both sides, we get: \text{ and dividing by 2 on both sides, we get:}

\\[3mm] 2 θ 2 ( cos ( z cos ( θ ) ) ) = 2 n = 1 ( 1 ) n ( 2 n ) 2 J 2 n ( z ) ( cos ( 2 n θ ) ) \frac{\partial^2 }{\partial \theta^2}(\cos(z\cos (\theta)))=2\sum_{n=1}^{\infty}(-1)^n(2n)^2J_{2n}(z)(-\cos(2n\theta))

\\[3mm] z [ cos ( θ ) sin ( z cos ( θ ) ) z sin 2 ( θ ) cos ( z cos ( θ ) ) ] 2 = n = 1 ( 1 ) n ( 2 n ) 2 J 2 n ( z ) ( cos ( 2 n θ ) ) \Rightarrow \frac{z [\cos(\theta) \sin(z \cos(\theta)) - z \sin^2(\theta) \cos(z \cos(\theta))]}{2}=\sum_{n=1}^{\infty}(-1)^n(2n)^2J_{2n}(z)(-\cos(2n\theta))

\\[3mm] It should be apparent that the right hand side of the previous step generates the numerator of the expression in our original integral when θ = k π , where k Z . Plugging this in for θ , we get: \text{It should be apparent that the right hand side of the previous step generates the numerator of the expression in our original integral when } \\ \theta=k\pi \text{, where } k\in \mathbb{Z}. \text{ Plugging this in for }\theta,\text{ we get:}

\\[3mm] n = 1 ( 1 ) n ( 2 n ) 2 J 2 n ( z ) = z sin ( z ) 2 -\sum_{n=1}^{\infty}(-1)^n(2n)^2J_{2n}(z)=\frac{z\sin(z)}{2}

\\[3mm] Similarly, for the denominator, we utilize the following real-valued variation of the Jacobi-Anger expansion: \text{Similarly, for the denominator, we utilize the following real-valued variation of the Jacobi-Anger expansion:}

\\[3mm] sin ( z cos ( θ ) ) = 2 n = 1 ( 1 ) n J 2 n 1 ( z ) cos [ ( 2 n 1 ) θ ) ] \sin(z\cos (\theta ))=-2\sum_{n=1}^{\infty}(-1)^nJ_{2n-1}(z)\cos[(2n-1)\theta)]

\\[3mm] Taking the second partial derivative with respect to θ , and dividing by 2 on both sides, we get: \text{Taking the second partial derivative with respect to } \theta \text{, and dividing by 2 on both sides, we get:} \\[3mm] 2 θ 2 ( sin ( z cos ( θ ) ) = 2 n = 1 ( 1 ) n ( 2 n 1 ) 2 J 2 n 1 ( z ) ( cos [ ( 2 n 1 ) θ ) ] ) \frac{\partial^2 }{\partial \theta^2}(\sin(z\cos (\theta ))=-2\sum_{n=1}^{\infty}(-1)^n(2n-1)^2J_{2n-1}(z)(-\cos[(2n-1)\theta)]) \\[3mm] z [ cos ( θ ) cos ( z cos ( θ ) ) + z sin 2 ( θ ) sin ( z cos ( θ ) ) ] 2 = n = 1 ( 1 ) n ( 2 n 1 ) 2 J 2 n 1 ( z ) ( cos [ ( 2 n 1 ) θ ) ] ) \Rightarrow \frac{-z [\cos(\theta) \cos(z \cos(\theta)) + z \sin^2(\theta) \sin(z \cos(\theta))]}{2}=- \sum_{n=1}^{\infty}(-1)^n(2n-1)^2J_{2n-1}(z)(-\cos[(2n-1)\theta)]) \\[3mm] The expression on the right hand side of the previous step, is equal to the denominator of the expression in our original integral when θ = k π , where k Z . Plugging this in for θ , we get: \text{The expression on the right hand side of the previous step, is equal to the denominator of the expression in our original integral when } \\ \theta=k\pi \text{, where } k\in \mathbb{Z}. \text{ Plugging this in for } \theta, \text{we get:}

\\[3mm] z cos ( z ) 2 = n = 1 ( 1 ) n ( 2 n 1 ) 2 J 2 n 1 ( z ) \frac{z\cos(z)}{2}= -\sum_{n=1}^{\infty}(-1)^n(2n-1)^2J_{2n-1}(z)

\\[3mm] Our integral has now become the following : \text{Our integral has now become the following}:

\\[3mm] 0 π 2 z sin ( z ) 2 z cos ( z ) 2 2 / 3 d z = 0 π 2 tan ( z ) 2 / 3 d z \int_{0}^{\frac{\pi}{2}}\frac{\frac{z\sin(z)}{2}}{\frac{z\cos(z)}{2}}^{2/3} dz=\int_{0}^{\frac{\pi}{2}}\tan(z)^{2/3}dz \\[3mm] Evaluating this integral, we finally arrive at our answer: \text{Evaluating this integral, we finally arrive at our answer:} \\[3mm] 0 π 2 tan ( z ) 2 / 3 d z 3.14158 \int_{0}^{\frac{\pi}{2}}\tan(z)^{2/3}dz\approx\fbox{3.14158}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...