Vigilant Triangle(s)

Geometry Level 3

Consider a right triangle A B C ABC with C = 9 0 \angle C=90^\circ . Suppose that the hypotenuse A B AB being divided into four equal parts by the points D , E , F D, E, F , such that A D = D E = E F = F B AD = DE = EF = FB . If C D 2 + C E 2 + C F 2 = 350 CD^2 + CE^2 + CF^2 = 350 . What is the length of A B AB ?

12 15 46 30 20

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Jan 12, 2021

Let B C = 4 w BC = 4w , A C = 4 h AC = 4h , and C ( 0 , 0 ) C(0,0) be the origin of the x y xy -plane. Then the coordinates of the other points are A ( 0 , 4 h ) A(0,4h) , B ( 4 w , 0 ) B(4w,0) , D ( w , 3 h ) D(w,3h) , E ( 2 w , 2 h ) E(2w,2h) , and F ( 3 w , h ) F(3w, h) . Then we have:

C D 2 + C E 2 + C F 2 = 350 ( w 2 + 9 h 2 ) + ( 4 w 2 + 4 h 2 ) + ( 9 w 2 + h 2 ) = 350 14 ( w 2 + h 2 ) = 350 w 2 + h 2 = 25 \begin{aligned} CD^2+CE^2+CF^2 & = 350 \\ (w^2 + 9h^2) + (4w^2 + 4h^2) + (9w^2 + h^2) & = 350 \\ 14(w^2+h^2) & = 350 \\ \implies w^2 + h^2 & = 25 \end{aligned}

And A B = B C 2 + A C 2 = 16 w 2 + 16 h 2 = 16 × 25 = 20 AB = \sqrt{BC^2+AC^2} = \sqrt{16w^2 + 16h^2} = \sqrt{16 \times 25} = \boxed{20} .

Thanks very much, Sir. By the way, how do I fix the level of this question?

Utsav Playz - 5 months ago

Log in to reply

It will be automatically adjusted by the system when more people try the problem.

Chew-Seong Cheong - 5 months ago

Denote the lengths of A B AB , B C BC , C A CA by c c , a a and b b . Then, A D = D E = E F = F B = c 4 AD=DE=EF=FB=\dfrac{c}{4} .

By Pythagorean theorem on A B C \triangle ABC , c 2 = a 2 + b 2 ( 1 ) {{c}^{2}}={{a}^{2}}+{{b}^{2}} \ \ \ \ \ (1) Moreover, for the mediean C E CE of the right A B C \triangle ABC it holds C E = A B 2 = c 2 CE=\frac{AB}{2}=\dfrac{c}{2} Using Apollonius’s theorem on C A E \triangle CAE and C E B \triangle CEB we have:

C A 2 + C E 2 = 2 C D 2 + A E 2 2 b 2 + c 2 4 = 2 C D 2 + c 8 2 C E 2 + C B 2 = 2 C F 2 + E B 2 2 c 2 4 + a 2 = 2 C F 2 + c 8 2 \begin{matrix} C{{A}^{2}}+C{{E}^{2}}=2C{{D}^{2}}+{{\dfrac{AE}{2}}^{2}}\Rightarrow {{b}^{2}}+\dfrac{{{c}^{2}}}{4}=2C{{D}^{2}}+{{\dfrac{c}{8}}^{2}} \\ C{{E}^{2}}+C{{B}^{2}}=2C{{F}^{2}}+{{\dfrac{EB}{2}}^{2}}\Rightarrow \dfrac{{{c}^{2}}}{4}+{{a}^{2}}=2C{{F}^{2}}+{{\dfrac{c}{8}}^{2}} \\ \end{matrix} Adding and rearranging,

2 ( C D 2 + C E 2 + C F 2 ) = a 2 + b 2 + 3 c 2 2 ( 1 ) 2 × 350 = 7 c 2 4 c 2 = 400 c = 20 2\left( C{{D}^{2}}+C{{E}^{2}}+C{{F}^{2}} \right)={{a}^{2}}+{{b}^{2}}+\dfrac{3{{c}^{2}}}{2}\overset{\left( 1 \right)}{\mathop{\Rightarrow }}\,2\times 350=\dfrac{7{{c}^{2}}}{4}\Rightarrow {{c}^{2}}=400\Rightarrow c=\boxed{20}

Sathvik Acharya
Jan 12, 2021

Let A D = D E = E F = F B = x AD=DE=EF=FB=x and draw lines through D , E D,E and F F parallel to base B C BC . Let them intersect A C AC at G , H G, H and I I respectively. Since the triangles formed are similar, A G = G H = H I = I C = y AG=GH=HI=IC=y D G = z , E H = 2 z , F I = 3 z , B C = 4 z DG=z,\; EH=2z,\; FI=3z,\; BC=4z

Using the Pythagorean Theorem in C G D , C H E \triangle CGD,\; \triangle CHE and C I F \triangle CIF , 9 y 2 + z 2 = C D 2 4 y 2 + 4 z 2 = C E 2 y 2 + 9 z 2 = C F 2 \begin{aligned} 9y^2+z^2&=CD^2 \\ 4y^2+4z^2&=CE^2 \\ y^2+9z^2&=CF^2 \end{aligned} Adding the above equations, 14 y 2 + 14 z 2 = C D 2 + C E 2 + C F 2 = 350 14y^2+14z^2=CD^2+CE^2+CF^2=350 y 2 + z 2 = 25 \implies y^2+z^2=25 In right-triangle A B C ABC , A C 2 + B C 2 = A B 2 AC^2+BC^2=AB^2 A B = 16 y 2 + 16 z 2 = 16 25 = 20 \implies AB=\sqrt{16y^2+16z^2}=\sqrt{16\cdot 25}=\boxed{20}

Really Great Solution. Well, for instance, could you tell me how did you arrive at the similarity of those triangles?

Utsav Playz - 5 months ago

Log in to reply

Thank you.

A G D A H E A I F A C B \triangle AGD\sim \triangle AHE\sim \triangle AIF\sim \triangle ACB because all of their angles are equal ( A \angle A is common and all are right triangles).

Hope it helps :)

Sathvik Acharya - 5 months ago

Thanks for your Reply. By the way, there's a small error C E 2 = 4 y 2 + 4 z 2 CE^2 = 4y^2 + 4z^2

Utsav Playz - 5 months ago
David Vreken
Jan 14, 2021

By the law of cosines on D A C \triangle DAC , C D 2 = d 2 + b 2 2 b d cos A CD^2 = d^2 + b^2 - 2bd \cos A .

By the law of cosines on E A C \triangle EAC , C E 2 = 4 d 2 + b 2 4 b d cos A CE^2 = 4d^2 + b^2 - 4bd \cos A .

By the law of cosines on F A C \triangle FAC , C F 2 = 9 d 2 + b 2 6 b d cos A CF^2 = 9d^2 + b^2 - 6bd \cos A .

By right B A C \triangle BAC , b = 4 d cos A b = 4d \cos A .

Adding the first three equations and substituting b = d cos A b = d \cos A , C D 2 + C E 2 + C F 2 = 14 d 2 + 3 b 2 12 b d cos A = 14 d 2 + 3 b 2 3 b 2 = 14 d 2 = 350 CD^2 + CE^2 + CF^2 = 14d^2 + 3b^2 - 12bd \cos A = 14d^2 + 3b^2 - 3b^2 = 14d^2 = 350 .

Therefore, d = 5 d = 5 and A B = 4 d = 4 5 = 20 AB = 4d = 4 \cdot 5 = \boxed{20} .

Chris Lewis
Jan 12, 2021

Put C C at the origin, A A on the y y -axis and B B on the x x -axis. Letting the sides of the triangle be a = B C a=BC , b = C A b=CA , c = A B c=AB as usual, the coordinates of the points are

A ( 0 , b ) A(0,b) B ( a , 0 ) B(a,0) C ( 0 , 0 ) C(0,0)
D ( a 4 , 3 b 4 ) D\left(\frac{a}{4},\frac{3b}{4}\right) E ( a 2 , b 2 ) E\left(\frac{a}{2},\frac{b}{2}\right) F ( 3 a 4 , b 4 ) F\left(\frac{3a}{4},\frac{b}{4}\right)

so that C D 2 + C E 2 + C F 2 = 1 16 [ a 2 + 9 b 2 + 4 a 2 + 4 b 2 + 9 a 2 + b 2 ] = 7 8 [ a 2 + b 2 ] CD^2+CE^2+CF^2=\frac{1}{16} \left[a^2+9b^2+4a^2+4b^2+9a^2+b^2\right]=\frac78 \left[a^2+b^2 \right]

Since we're told in the question that this is 350 350 , and since a 2 + b 2 = c 2 a^2+b^2=c^2 , we find c 2 = 400 c^2=400

so the length of the hypotenuse is 20 \boxed{20} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...