Beware of Surds

Algebra Level 3

( 1 + 5 2 ) 11 ( 1 5 2 ) 11 5 \large \dfrac{ \left (\dfrac{1+\sqrt{5}}{2}\right)^{11}- \left (\dfrac{1-\sqrt{5}}{2}\right)^{11}}{\sqrt{5}}

Find the value of the above expression.


The answer is 89.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki .- Fibonacci sequence

This is the 1 1 t h 11^{th} term in Fibonacci sequence. F 1 = F 2 = 1 , F n + 1 = F n + F n 1 F_1 = F_2 = 1, \space F_{n +1} = F_{n} + F_{n -1} . This is a difference equation... x 2 x 1 = 0.... F n = ( 1 + 5 2 ) n ( 1 5 2 ) n 5 F 11 = ( 1 + 5 2 ) 11 ( 1 5 2 ) 11 5 = 89 x^2 -x - 1 = 0 ....\Rightarrow F_n = \frac{(\frac{1 + \sqrt{5}}{2})^{n} - (\frac{1 - \sqrt{5}}{2})^{n}}{\sqrt{5}} \Rightarrow F_{11} = \frac{(\frac{1 + \sqrt{5}}{2})^{11} - (\frac{1 - \sqrt{5}}{2})^{11}}{\sqrt{5}} = 89

This was the method I expected

Aaron Jerry Ninan - 4 years, 10 months ago
Sabhrant Sachan
Aug 1, 2016

Solve it Normally Let A = ( 1 + 5 2 ) 11 ( 1 + 5 2 ) 11 5 A = 1 2 10 ( ( 11 1 ) 5 + ( 11 3 ) 5 3 2 + ( 11 5 ) 5 5 2 + + ( 11 11 ) 5 11 2 5 ) A = 1 2 10 [ ( 11 1 ) + ( 11 3 ) 5 + ( 11 5 ) 25 + + ( 11 11 ) 5 5 ] A = 1 2 10 [ ( 11 + 3125 ) + 11 × 10 × 9 3 ! × 5 + 11 × 10 × 9 × 8 × 7 5 ! × 25 + 11 × 10 × 9 × 8 4 ! × 125 + 11 × 10 2 × 625 ] A = 1 2 10 [ 3136 + 11 × 25 × 3 + 11 × 6 × 7 × 25 + 330 × 125 + 625 × 55 11 × 5 × 5 ( 3 + 42 + 150 + 125 ) ] A = 1 2 10 [ 3136 + 11 × 25 × 320 ] 1 2 4 ( 49 + 11 × 25 × 5 ) = 89 \text{Solve it Normally} \\ \text{Let A} = \dfrac{\left(\dfrac{1+\sqrt5}{2}\right)^{11}-\left(\dfrac{1+\sqrt5}{2}\right)^{11}}{\sqrt{5}} \\ A = \dfrac{1}{2^{10}} \left( \dfrac{ \dbinom{11}{1} \sqrt5 +\dbinom{11}{3} 5^{\frac32}+\dbinom{11}{5} 5^{\frac52}+\cdots+\dbinom{11}{11} 5^{\frac{11}{2}}}{\sqrt5} \right) \\ A = \dfrac{1}{2^{10}} \left[ \dbinom{11}{1} +\dbinom{11}{3} 5+\dbinom{11}{5} 25+\cdots+\dbinom{11}{11} 5^5 \right] \\ A=\dfrac{1}{2^{10}}\left[ (11+3125)+\dfrac{11\times 10\times9}{3!}\times5+\dfrac{11\times 10\times 9 \times 8\times 7}{5!}\times25+\dfrac{11\times 10 \times 9\times 8}{4!}\times125+\dfrac{11\times10}{2}\times625 \right] \\ A= \dfrac{1}{2^{10}} \left[ 3136+\underbrace{11\times 25\times 3+11\times6 \times 7\times 25+330\times 125+625\times55}_{11\times5\times5\left( 3+42+150+125\right)} \right] \\ A=\dfrac{1}{2^{10}} \left[3136+11\times25\times320 \right] \implies \dfrac{1}{2^4}\left(49+11\times25\times5 \right) = \boxed{89}


This method Requires more steps but it is less time consuming if you do it the right way \text{This method Requires more steps but it is less time consuming if you do it the right way}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...