Beware: Wet Floor!

Algebra Level 4

2 x = 1 x + 1 2 x \large \frac{2}{x} = \frac{1}{\lfloor x \rfloor} + \frac{1}{\lfloor 2x \rfloor}

If the largest real number x x that satisfies the equation above can be expressed in the form p q \dfrac{p}{q} , where p p and q q are relatively prime positive integers, find p + q p+q .

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant Wiki: Hermite's Identity

Let x = a + r x= a + r where a Z a \in \mathbb{Z} and 0 r < 1 0 \leq r < 1

\implies x = a \lfloor x \rfloor = a

\implies 2 x = x + x + 1 2 = 2 a \lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \dfrac{1}{2} \rfloor = 2a

if 0 r < 1 2 0 \leq r < \frac{1}{2}

or

2 x = x + x + 1 2 = 2 a + 1 \lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \dfrac{1}{2} \rfloor = 2a+1

if 1 2 r < 1 \frac{1}{2} \leq r < 1

Case 1: if 0 r < 1 2 0 \leq r < \frac{1}{2}

The equation becomes,

2 a + r = 1 a + 1 2 a \dfrac{2}{a+r} = \dfrac{1}{a} + \dfrac{1}{2a}

a = 3 r \implies a=3r

If a 2 a \geq 2 , then r 2 3 > 1 2 r \geq \dfrac{2}{3} > \dfrac{1}{2} which is impossible

So a = 1 a=1 and r = 1 3 r=\dfrac{1}{3} giving us x = 4 3 x=\dfrac{4}{3}

Case 2: if 1 2 r < 1 \frac{1}{2} \leq r < 1

Then the equation becomes

2 a + r = 1 a + 1 2 a + 1 \dfrac{2}{a+r} = \dfrac{1}{a} + \dfrac{1}{2a+1}

a 2 + a = 3 a r + r \implies a^2 +a=3ar +r

If a 3 a \geq 3 , then r 6 5 > 1 r \geq \dfrac{6}{5} > 1 which is impossible

So we are left with a = 1 a=1 and a = 2 a=2

If a = 1 a=1 then r = 1 2 r=\dfrac{1}{2} and x = 3 2 x=\dfrac{3}{2}

If a = 2 a=2 then r = 6 7 r=\dfrac{6}{7} and x = 20 7 x=\dfrac{20}{7}

\therefore The largest value is x = 20 7 x=\dfrac{20}{7} and p + q = 27 . p+q=\boxed{27}.

In case you're wondering where the fact 2 x = x + x + 1 2 \lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \dfrac{1}{2} \rfloor came from. Please check out Hermite's Identity .

Hans Gabriel Daduya - 3 years, 4 months ago

2 x = 1 x + 1 2 x = 2 x + x x 2 x 2 x 2 x = x ( 2 x + x ) Using x = x + { x } = ( x + { x } ) ( 2 x + x ) where { x } is the fractional part of x . x 2 x x 2 = { x } ( 2 x + x ) { x } = x ( 2 x x ) 2 x + x \begin{aligned} \frac 2x & = \frac 1{\lfloor x \rfloor} + \frac 1{\lfloor 2x \rfloor} \\ & = \frac {\lfloor 2x \rfloor + \lfloor x \rfloor}{\lfloor x \rfloor\lfloor 2x \rfloor} \\ 2 \lfloor x \rfloor \lfloor 2x \rfloor & = {\color{#3D99F6}x} \left(\lfloor 2x \rfloor + \lfloor x \rfloor\right) & \small \color{#3D99F6} \text{Using }x = \lfloor x \rfloor + \{x\} \\ & = {\color{#3D99F6}\left( \lfloor x \rfloor + \{x\}\right)} \left(\lfloor 2x \rfloor + \lfloor x \rfloor\right) & \small \color{#3D99F6} \text{where }\{x\} \text{ is the fractional part of }x. \\ \lfloor x \rfloor \lfloor 2x \rfloor - \lfloor x \rfloor ^2 & = \{x\} \left(\lfloor 2x \rfloor + \lfloor x \rfloor\right) \\ \implies \{x\} & = \frac {\lfloor x \rfloor \left(\lfloor 2x \rfloor - \lfloor x \rfloor\right)}{\lfloor 2x \rfloor + \lfloor x \rfloor} \end{aligned}

Note that 0 { x } < 1 0 \le \{x\} < 1 . And the largest possible x x is when { x } < 1 \{x\} < 1 :

x ( 2 x x ) 2 x + x < 1 x ( 2 x x ) < 2 x + x x < 3 \begin{aligned} \frac {\lfloor x \rfloor \left(\lfloor 2x \rfloor - \lfloor x \rfloor\right)}{\lfloor 2x \rfloor + \lfloor x \rfloor} & < 1 \\ \lfloor x \rfloor \left(\lfloor 2x \rfloor - \lfloor x \rfloor\right) & < \lfloor 2x \rfloor + \lfloor x \rfloor \\ \implies x & < 3 \end{aligned}

For x x slightly less than 3,

2 x = 1 2 + 1 5 = 7 10 x = 20 7 \begin{aligned} \frac 2x & = \frac 12 + \frac 15 = \frac 7{10} \\ \implies x & = \frac {20}7 \end{aligned}

Therefore, p + q = 20 + 7 = 27 p+q = 20+7 = \boxed{27} .

This is great!

Hans Gabriel Daduya - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...