Perplexing Years!

Let the numbers P = 200 8 2007 2008 P=2008^{2007}-2008 , and Q = 200 8 2 + 2009 Q=2008^{2}+2009 .

What is the remainder when P P is divided by Q Q ?


The answer is 4032066.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Wesllen Brendo
Aug 24, 2014

Making x = 2008 x=2008 . So P = x 2007 x P=x^{2007}-x and Q = x 2 + x + 1 Q=x^{2}+x+1 . Thus, we have to solve x 2007 x ( m o d x 2 + x + 1 ) x^{2007}-x \pmod{x^{2}+x+1} . How x 2 + x + 1 0 ( m o d x 2 + x + 1 ) x^{2}+x+1\equiv 0\pmod{x^{2}+x+1} \Rightarrow x 2 ( x + 1 ) ( m o d x 2 + x + 1 ) x^{2}\equiv -(x+1)\pmod{x^{2}+x+1} \Rightarrow ( x 2 ) 2 ( ( x + 1 ) ) 2 ( m o d x 2 + x + 1 ) (x^{2})^{2}\equiv (-(x+1))^{2}\pmod{x^{2}+x+1} \Rightarrow x 4 x 2 + 2 x + 1 = x 2 + x + 1 + x x ( m o d x 2 + x + 1 ) x^{4}\equiv x^{2}+{2x}+1=x^{2}+x+1+x\equiv x\pmod{x^{2}+x+1} . That is, x 4 x ( m o d x 2 + x + 1 ) x^{4}\equiv x\pmod{x^{2}+x+1} and g c d ( x , x 2 + x + 1 ) = 1 gcd(x,x^2+x+1)=1 \Rightarrow x 3 1 ( m o d x 2 + x + 1 ) x^{3}\equiv 1\pmod{x^{2}+x+1} \Rightarrow x 2007 1 ( m o d x 2 + x + 1 ) x^{2007}\equiv 1\pmod{x^{2}+x+1} \Rightarrow x 2007 x 1 x ( m o d x 2 + x + 1 ) x^{2007}-x\equiv 1-x\pmod{x^{2}+x+1} . Therefore, 200 8 2007 2008 1 2008 = 2007 ( m o d 200 8 2 + 2009 ) 2008^{2007}-2008\equiv 1-2008=-2007\pmod{2008^{2}+2009} . How 200 8 2 + 2009 = 4034073 2008^{2}+2009=4034073 , so 200 8 2007 2008 2007 4034073 2007 = 4032066 ( m o d 200 8 2 + 2009 ) 2008^{2007}-2008\equiv -2007\equiv 4034073-2007=\boxed{4032066}\pmod{2008^{2}+2009} .

Brilliant solution!!!! Thank YOU!

Kartik Sharma - 6 years, 9 months ago

Same way! Was starting to wonder how everyone else did it...

Ryan Tamburrino - 6 years, 9 months ago

Brilliant and awesome solution! Waiting for the next ball. Thanks.

Prabir Chaudhuri - 6 years, 8 months ago
Aaaaaa Bbbbbb
Aug 21, 2014

200 8 3 = ( 200 8 2 + 2009 ) + 1 2008^3=(2008^2+2009)+1 200 8 2007 = K × ( 200 8 2 + 2009 ) + 1 2008^{2007}=K \times (2008^2+2009)+1 R e s = 200 8 2 + 2009 2007 = 4032066 Res = 2008^2+2009 - 2007 = \boxed{4032066}

200 8 3 ( 200 8 2 + 2009 ) + 1 2008^3\neq (2008^2+2009)+1 . You meant 200 8 3 = 2007 ( 200 8 2 + 2009 ) + 1 2008^3= 2007(2008^2+2009)+1

mathh mathh - 6 years, 9 months ago

2008^3 is not equal to (2008^2 + 2009) + 1.....

Ryan Tamburrino - 6 years, 9 months ago

Log in to reply

A senseless stupid mistake done by the solution writer and still it has 6 upvotes ! I feel spooky...

Aditya Raut - 6 years, 9 months ago

Log in to reply

Hey ! @Aditya Raut -Atleast this solution is okay! Look at Anik mANDal's 100% INCORRECT solution to Daniel Lim's problem- Do ya know the identity to solve this? -He also has 10 upvotes :( So bad!!

Krishna Ar - 6 years, 8 months ago
David Altizio
Aug 25, 2014

Let x = 2008 x=2008 . Note that since 2007 2007 is divisible by 3 3 , x 2007 1 x^{2007}-1 is divisible by x 3 1 x^3-1 , so for some polynomial P ( x ) P(x) with integer coefficients we have x 2007 x x 2 + x + 1 = x 2007 1 x 2 + x + 1 + 1 x x 2 + x + 1 = ( x 3 1 ) P ( x ) x 2 + x + 1 + 1 x x 2 + x + 1 = ( x 1 ) P ( x ) + 1 x x 2 + x + 1 . \begin{aligned}\dfrac{x^{2007}-x}{x^2+x+1}&=\dfrac{x^{2007}-1}{x^2+x+1}+\dfrac{1-x}{x^2+x+1}\\&=\dfrac{(x^3-1)P(x)}{x^2+x+1}+\dfrac{1-x}{x^2+x+1}\\&=(x-1)P(x)+\dfrac{1-x}{x^2+x+1}.\end{aligned} The first term is necessarily an integer, so the remainder is just 1 x = 2007 200 8 2 + 2 4032066 ( m o d 200 8 2 + 2009 ) . 1-x=-2007\equiv 2008^2+2\equiv\boxed{4032066}\pmod{2008^2+2009}.

Lu Chee Ket
Aug 22, 2014

Let x = 2008

x^2007 - x

= x^2007 + x^2006 + x^2005 - x^2006 - x^2005 - x

= x^2005 (x^2 + x + 1) - (x^2006 + x^2005 + x^2004) + x^2004 - x

= x^2005 (x^2 + x + 1) - x^2004 (x^2 + x + 1) + x^2004 - x

--> x^2004 - x

--> x^(3n + 0) - x {2007/ 3 = 669 and 2004/ 3 = 668}

--> 1 - x or x^3 - x

Simplified positive numbers = (x3 - x)/ (x2 + x + 1) = x (x2 - 1)/ (x2 + x + 1)

= 2008 * 4032063/4034073

= 8096382504/ 4034073

Remainder = MOD(8096382504, 4034073) = 4032066

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...