Bi-quadratic Equation

Level pending

If the roots of the equation x 4 x^{4} - 4 x 3 x^{3} + 8 x 2 x^{2} + 9x +11 = 0 are α \alpha , β \beta , γ \gamma and δ \delta . Then find the value of α 2 \alpha^{2} + β 2 \beta^{2} + γ 2 \gamma^{2} + δ 2 \delta^{2} + α × β × γ × δ \alpha \times \beta \times \gamma \times \delta .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aman Bansal
Mar 26, 2014

The standard form of a Bi-quadratic Equation is a x 4 x^{4} + b x 3 x^{3} + c x 2 x^{2} + dx + e = 0. Let the roots of this equation be α \alpha , β \beta , γ \gamma and δ \delta . Then,

The sum of its roots ( α \alpha + β \beta + γ \gamma + δ \delta ) = b a \frac{-b}{a} .

The sum of its roots taken 2 at a time ( α \alpha β \beta + β \beta γ \gamma + γ \gamma δ \delta + α \alpha γ \gamma + α \alpha δ \delta + β \beta δ \delta ) = c a \frac{c}{a} .

The sum of its roots taken 3 at a time ( α \alpha β \beta γ \gamma + α \alpha γ \gamma δ \delta + α \alpha β \beta δ \delta + β \beta γ \gamma δ \delta ) = d a \frac{-d}{a} .

And the product of its roots ( α \alpha β \beta γ \gamma δ \delta ) = e a \frac{e}{a} .

In the given equation, a = 1, b = -4, c = 8, d= 9 and e = 11. So,

α \alpha + β \beta + γ \gamma + δ \delta = 4.

α \alpha β \beta + β \beta γ \gamma + γ \gamma δ \delta + α \alpha γ \gamma + α \alpha δ \delta + β \beta δ \delta = 8.

α \alpha β \beta γ \gamma + α \alpha γ \gamma δ \delta + α \alpha β \beta δ \delta + β \beta γ \gamma δ \delta = -9.

α \alpha β \beta γ \gamma δ \delta = 11.

Now, α 2 \alpha^{2} + β 2 \beta^{2} + γ 2 \gamma^{2} + δ 2 \delta^{2} = { α \alpha + β \beta + γ \gamma + δ \delta }^2 - 2( α \alpha β \beta + β \beta γ \gamma + γ \gamma δ \delta + α \alpha γ \gamma + α \alpha δ \delta + β \beta δ \delta ).

= 4 2 4^{2} - 2(8)

= 16 - 16 = 0

So, α 2 \alpha^{2} + β 2 \beta^{2} + γ 2 \gamma^{2} + δ 2 \delta^{2} + α \alpha β \beta γ \gamma δ \delta = 0 + 11 = 11

And we have got our answer ........ 11 \boxed{11}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...