( 1 0 0 2 0 1 7 ) + ( 1 0 0 2 0 1 8 ) + ( 1 0 0 2 0 1 9 ) + ( 1 0 0 2 0 2 0 ) + ⋯ + ( 1 0 0 3 0 1 8 ) = ( 1 0 1 3 0 1 9 ) − n ?
What is the value of n in the equation above?
Bonus : Generalize for ( y x ) + ( y x + 1 ) + ( y x + 2 ) + ( y x + 3 ) + ⋯ + ( y x + z ) = ( y + 1 x + z + 1 ) − k
Notation: ( N M ) = N ! ( M − N ) ! M ! denotes the binomial coefficient .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Perfect solution!
The hockey stick identity states that
i = n ∑ m ( n i ) = ( n + 1 m + 1 ) .
This identity can be proven using Pascal's identity, as per Chew-Seong's solution.
By the identity, we have
( 1 0 0 2 0 1 7 ) + ( 1 0 0 2 0 1 8 ) + ⋯ + ( 1 0 0 3 0 1 8 ) = i = 2 0 1 7 ∑ 3 0 1 8 ( 1 0 0 i ) = i = 1 0 0 ∑ 3 0 1 8 ( 1 0 0 i ) − i = 1 0 0 ∑ 2 0 1 6 ( 1 0 0 i ) = ( 1 0 1 3 0 1 9 ) − ( 1 0 1 2 0 1 7 ) .
Note that
( r n ) + ( r − 1 n ) = r ! ( n − r ) ! n ! + ( r − 1 ) ! ( n − r + 1 ) ! n ! = ( r − 1 ) ! ( n − r ) ! n ! ( r 1 + n − r + 1 1 ) = ( r − 1 ) ! ( n − r ) ! n ! ( r ( n + 1 − r ) n + 1 ) = r ! ( n + 1 − r ) ! ( n + 1 ) ! = ( r n + 1 )
∴ ( r n ) = ( r n + 1 ) − ( r − 1 n )
Following the generalization given in the problem
⟹ ⟹ ⟹ ⟹ ( y x ) + ( y x + 1 ) + ⋯ + ( y x + z ) = ( y + 1 x + z + 1 ) − k k = [ ( y + 1 x + z + 1 ) − ( y x + z ) ] − ( y x + z − 1 ) − ⋯ − ( y x + 1 ) − ( y x ) k = [ ( y + 1 x + z ) − ( y x + z − 1 ) ] − ⋯ − ( y x + 1 ) − ( y x ) ⋮ k = ( y + 1 x + 1 ) − ( y x ) k = ( y + 1 x )
Thus for x = 2 0 1 7 , y = 1 0 0 we have n = ( 1 0 1 2 0 1 7 ) .
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Binomial Coefficient
Pascal's rule states that:
( y x ) + ( y + 1 x ) ⟹ ( y x ) ( y x ) + ( y x + 1 ) ( y x ) + ( y x + 1 ) + ( y x + 2 ) ( y x ) + ( y x + 1 ) + ( y x + 2 ) + ( y x + 3 ) ⋯ ( y x ) + ( y x + 1 ) + ( y x + 2 ) + ( y x + 3 ) + ⋯ + ( y x + z ) = ( y + 1 x + 1 ) = ( y + 1 x + 1 ) − ( y + 1 x ) = By Pascal’s rule ( y x + 1 ) + ( y + 1 x + 1 ) − ( y + 1 x ) = ( y + 1 x + 2 ) − ( y + 1 x ) = ( y + 1 x + 3 ) − ( y + 1 x ) = ( y + 1 x + 4 ) − ( y + 1 x ) = ⋯ = ( y + 1 x + z + 1 ) − ( y + 1 x )
For x = 2 0 1 7 and y = 1 0 0 , we have n = ( 1 0 1 2 0 1 7 ) .