Bi...

( 2017 100 ) + ( 2018 100 ) + ( 2019 100 ) + ( 2020 100 ) + + ( 3018 100 ) = ( 3019 101 ) n ? \binom{2017}{100}+\binom{2018}{100}+\binom{2019}{100}+\binom{2020}{100}+\dots+\binom{3018}{100}=\binom{3019}{101}-{\color{#D61F06}{n}}?

What is the value of n {\color{#D61F06}{n}} in the equation above?

Bonus : Generalize for ( x y ) + ( x + 1 y ) + ( x + 2 y ) + ( x + 3 y ) + + ( x + z y ) = ( x + z + 1 y + 1 ) k \binom{x}{y}+\binom{x+1}{y}+\binom{x+2}{y}+\binom{x+3}{y}+\dots+\binom{x+z}{y}=\binom{x+z+1}{y+1}-{\color{#3D99F6}{k}}


Notation: ( M N ) = M ! N ! ( M N ) ! \displaystyle {M \choose N} = \frac {M!}{N!(M-N)!} denotes the binomial coefficient .

( 2018 101 ) \binom{2018}{101} ( 2017 2017 ) \binom{2017}{2017} 0 ( 2017 100 ) \binom{2017}{100} ( 2017 101 ) \binom{2017}{101} ( 2018 100 ) \binom{2018}{100} ( 2016 100 ) \binom{2016}{100} ( 2016 101 ) \binom{2016}{101}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Aug 25, 2017

Relevant wiki: Binomial Coefficient

Pascal's rule states that:

( x y ) + ( x y + 1 ) = ( x + 1 y + 1 ) ( x y ) = ( x + 1 y + 1 ) ( x y + 1 ) ( x y ) + ( x + 1 y ) = ( x + 1 y ) + ( x + 1 y + 1 ) By Pascal’s rule ( x y + 1 ) = ( x + 2 y + 1 ) ( x y + 1 ) ( x y ) + ( x + 1 y ) + ( x + 2 y ) = ( x + 3 y + 1 ) ( x y + 1 ) ( x y ) + ( x + 1 y ) + ( x + 2 y ) + ( x + 3 y ) = ( x + 4 y + 1 ) ( x y + 1 ) = ( x y ) + ( x + 1 y ) + ( x + 2 y ) + ( x + 3 y ) + + ( x + z y ) = ( x + z + 1 y + 1 ) ( x y + 1 ) \begin{aligned} {x \choose y} + {x \choose y+1} & = {x+1 \choose y+1} \\ \implies {x \choose y} & = {x+1 \choose y+1} - {x \choose y+1} \\ {x \choose y} + {\color{#3D99F6} {x+1 \choose y}} & = \underbrace{\color{#D61F06}{\color{#3D99F6} {x+1 \choose y}} + {x+1 \choose y+1}}_{\color{#D61F06} \text{By Pascal's rule}} - {x \choose y+1} \\ & = {\color{#D61F06} {x+2 \choose y + 1}} - {x \choose y+1} \\ {x \choose y} + {x+1 \choose y} + {\color{#3D99F6} {x+2 \choose y}} & = {\color{#D61F06} {x+3 \choose y + 1}} - {x \choose y+1} \\ {x \choose y} + {x+1 \choose y} + {x+2 \choose y} + {\color{#3D99F6} {x+3 \choose y}} & = {\color{#D61F06} {x+4 \choose y + 1}} - {x \choose y+1} \\ \cdots \ & = \ \cdots \\ {x \choose y} + {x+1 \choose y} + {x+2 \choose y} + {x+3 \choose y} + \cdots + {\color{#3D99F6} {x+z \choose y}} & = {\color{#D61F06} {x+z+1 \choose y + 1}} - {x \choose y+1} \end{aligned}

For x = 2017 x=2017 and y = 100 y=100 , we have n = ( 2017 101 ) n = \boxed{\displaystyle {2017 \choose 101}} .

Perfect solution!

Áron Bán-Szabó - 3 years, 9 months ago
Steven Yuan
Aug 25, 2017

The hockey stick identity states that

i = n m ( i n ) = ( m + 1 n + 1 ) . \sum_{i = n}^m \binom{i}{n} = \binom{m + 1}{n + 1}.

This identity can be proven using Pascal's identity, as per Chew-Seong's solution.

By the identity, we have

( 2017 100 ) + ( 2018 100 ) + + ( 3018 100 ) = i = 2017 3018 ( i 100 ) = i = 100 3018 ( i 100 ) i = 100 2016 ( i 100 ) = ( 3019 101 ) ( 2017 101 ) . \begin{aligned} \binom{2017}{100} + \binom{2018}{100} + \cdots + \binom{3018}{100} &= \sum_{i = 2017}^{3018} \binom{i}{100} \\ &= \sum_{i = 100}^{3018} \binom{i}{100} - \sum_{i = 100}^{2016} \binom{i}{100} \\ &= \binom{3019}{101} - \boxed{\dbinom{2017}{101}}. \end{aligned}

Tapas Mazumdar
Aug 28, 2017

Note that

( n r ) + ( n r 1 ) = n ! r ! ( n r ) ! + n ! ( r 1 ) ! ( n r + 1 ) ! = n ! ( r 1 ) ! ( n r ) ! ( 1 r + 1 n r + 1 ) = n ! ( r 1 ) ! ( n r ) ! ( n + 1 r ( n + 1 r ) ) = ( n + 1 ) ! r ! ( n + 1 r ) ! = ( n + 1 r ) \begin{aligned} \binom {n}{r} + \binom {n}{r-1} &= \dfrac{n!}{r!(n-r)!} + \dfrac{n!}{(r-1)!(n-r+1)!} \\ &= \dfrac{n!}{(r-1)!(n-r)!} \left( \dfrac 1r + \dfrac{1}{n-r+1} \right) \\ &= \dfrac{n!}{(r-1)!(n-r)!} \left( \dfrac{n+1}{r(n+1-r)} \right) \\ &= \dfrac{(n+1)!}{r! (n+1-r)!} \\ &= \binom{n+1}{r} \end{aligned}

( n r ) = ( n + 1 r ) ( n r 1 ) \therefore \dbinom{n}{r} = \dbinom{n+1}{r} - \dbinom{n}{r-1}

Following the generalization given in the problem

( x y ) + ( x + 1 y ) + + ( x + z y ) = ( x + z + 1 y + 1 ) k k = [ ( x + z + 1 y + 1 ) ( x + z y ) ] ( x + z 1 y ) ( x + 1 y ) ( x y ) k = [ ( x + z y + 1 ) ( x + z 1 y ) ] ( x + 1 y ) ( x y ) k = ( x + 1 y + 1 ) ( x y ) k = ( x y + 1 ) \begin{aligned} & \binom{x}{y} + \binom{x+1}{y} + \cdots + \binom{x+z}{y} = \binom{x+z+1}{y+1} - k \\ \implies & k = \left[ \binom{x+z+1}{y+1} - \binom{x+z}{y} \right] - \binom{x+z-1}{y} - \cdots - \binom{x+1}{y} - \binom{x}{y} \\ \implies & k = \left[ \binom{x+z}{y+1} - \binom{x+z-1}{y} \right] - \cdots - \binom{x+1}{y} - \binom{x}{y} \\ & \vdots \\ \implies & k = \binom{x+1}{y+1} - \binom{x}{y} \\ \implies & k = \binom{x}{y+1} \end{aligned}

Thus for x = 2017 , y = 100 x=2017 \ , \ y=100 we have n = ( 2017 101 ) \boxed{n= \dbinom{2017}{101}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...