BID for the angle

Geometry Level 5

Given in the figure, a Δ A B C \Delta ABC with sides A B = 3 2 6 AB=3\sqrt{2}-\sqrt{6} , A C = 3 2 + 6 AC=3\sqrt{2}+\sqrt{6} and B C = 6 BC=6 units. A D AD is the angle bisector of B A C \angle BAC , with D D on B C BC . I I is the in-center of Δ A B C \Delta ABC .

B I D = cot 1 ( P + Q R S ) \large{\angle BID=\cot^{-1} \left(\sqrt{P}+\sqrt{Q}-\sqrt{R}-S \right)}

where P , Q , R , S P,Q,R,S are integers with P , Q , R P,Q,R being square free. Find the value of P + Q + R + S P+Q+R+S .

Clarification : cot 1 ( x ) = arccot ( x ) \cot^{-1} (x)=\text{arccot} (x) .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tanishq Varshney
Oct 24, 2015

Using cosine rule \text{Using cosine rule}

B A C = 6 0 ; B C A = 1 5 \angle BAC=60^{\circ};\angle BCA =15^{\circ}

D A B = 3 0 \angle DAB=30^{\circ} as AD is angle bisector.

A D B = I D B ( o f c o u r s e ) = 4 5 \angle ADB=\angle IDB~(of~course)=45^{\circ} , exterior angle property.

Now, we know in-center divides the angle bisector in the ratio sum of sides excluding the side opposite to the vertex from which the angle bisector is drawn excluded side \large{\frac{\text{sum of sides excluding the side opposite to the vertex from which the angle bisector is drawn}}{\text{excluded side}}}

A I I D = 3 2 + 6 + 3 2 6 6 = 2 1 = m n \large{\frac{AI}{ID}=\frac{3\sqrt{2}+\sqrt{6}+3\sqrt{2}-\sqrt{6}}{6}=\frac{\sqrt{2}}{1}=\frac{m}{n}}

Using m-n cot theorem

( 2 + 1 ) k cot ( B I D ) = k cot ( 3 0 ) 2 k cot ( 4 5 ) \large{(\sqrt{2}+1)k \cot(\angle BID)=k \cot (30^{\circ})-\sqrt{2}k \cot (45^{\circ})}

B I D = cot 1 ( 6 + 2 3 2 ) \large{\boxed{\angle BID=\cot^{-1} (\sqrt{6}+\sqrt{2}-\sqrt{3}-2)}}

Please correct your diagram. Angle BID=A/2+B/2=82.5 from your calculations. Tan82.5=root2+root3+root4+root6. It's reciprocal gives the answer directly.
Also tan(C/2) also gives the answer, no need of incenter.

Niranjan Khanderia - 5 years, 7 months ago

Log in to reply

The diagram is correct, whats the problem. I took incenter so as to apply m-n cot theorem.

Tanishq Varshney - 5 years, 7 months ago

Log in to reply

Sorry. Since it was a portion of the triangle , I was mislead . The diagram IS correct.

Niranjan Khanderia - 5 years, 7 months ago

and in exams we are not allowed to use calculator so its basically a JEE approach

Tanishq Varshney - 5 years, 7 months ago

There are three steps to the solution of this problem on triangle.

  1. Finding out Δ X Y Z Δ A B C \Delta~XYZ \cong \Delta ABC so that converted data of Δ X Y Z \Delta~XYZ is simpler than that of Δ A B C \Delta~ABC .

  2. The acute angle between angle bisector from X and Y = π Z 2 \dfrac{\pi - Z} 2 .

  3. Use Cos Rule to find Z 2 \dfrac Z 2 , and relate it to the answer reqired.

1.. Dividing all three sides of the A B C b y 6 , w e g e t a s i m i l a r Δ X Y Z . M D , a n d P I . S o B I D = Y P M . X Y = 3 1 , Y Z = 6 , X Z = 3 + 1. \text{ 1.. Dividing all three sides of the } \triangle~ ABC ~by~\sqrt6,\\ we~get~a~similar~\Delta~XYZ.~\ \ \ \ \ ~M~ \cong~ D,~~ and~~ P~ \cong~ I .\\ So~\angle BID~=~\angle YPM.~~~~\color{#3D99F6}{XY=\sqrt3-1,~~YZ=\sqrt6,~~XZ=\sqrt3 +1.}\\~~\\ 2. e x t e r n a l Y P M = i n t e r n a l s X 2 + Y 2 . X 2 + Y 2 + Z 2 = π 2 , π 2 Y P M = Z 2 . C o t B I D = C o t Y P M = C o t { π 2 Z 2 } = T a n Z 2 . 2.~~external~\angle YPM=internal~\angle s~\dfrac X 2+\dfrac Y 2.~~~\ \ \ \ ~\dfrac X 2+\dfrac Y 2+\dfrac Z 2=\dfrac \pi 2,\\ \implies \dfrac \pi 2 - \angle YPM=\dfrac Z 2.\\ \therefore~\color{#3D99F6}{CotBID}=CotYPM=Cot\{\dfrac \pi 2 - \dfrac Z 2\}=\color{#3D99F6}{Tan\dfrac Z 2}.\\~~\\ 3. C o s Z = ( 6 ) 2 + ( 3 + 1 ) 2 ( 3 1 ) 2 2 6 ( 3 + 1 ) = 3 + 2 2 ( 3 + 1 ) B u t C o c Z = 2 C o s 2 Z 2 1 , C o s 2 Z 2 = C o s Z + 1 2 C o s 2 Z 2 = 3 + 2 + 6 + 2 2 2 ( 3 + 1 ) . T a n 2 Z 2 = 1 C o s 2 Z 2 1 = 2 2 ( 3 + 1 ) 3 + 2 + 6 + 2 1. O n r a t i o n a l i s i n g C o t B I D = T a n Z 2 = 6 + 2 3 2 = P + Q R S . P + Q + R + S = 13 3.~~CosZ=\dfrac{(\sqrt6)^2+(\sqrt3 + 1)^2 - (\sqrt3 - 1)^2}{2*\sqrt6*(\sqrt3 +1)} =\dfrac{\sqrt3+2}{\sqrt2*(\sqrt3+1)}\\ But~CocZ=2*Cos^2\dfrac Z 2 -1,\ \ \ \ \ \ \implies~ Cos^2\dfrac Z 2=\dfrac{CosZ+1} 2\\ \therefore~Cos^2\dfrac Z 2=\dfrac{\sqrt3+2+\sqrt6+\sqrt2}{2*\sqrt2*(\sqrt3+1)}.\\ \therefore ~Tan^2\dfrac Z 2=\dfrac 1 { Cos^2\dfrac Z 2} - 1 =\dfrac {2*\sqrt2*(\sqrt3+1)} {\sqrt3+2+\sqrt6+\sqrt2}- 1.\\ On ~~rationalising~ CotBID= Tan\dfrac Z 2=\sqrt6+\sqrt2 - \sqrt3 - 2 \\ =\sqrt P+\sqrt Q - \sqrt R - S.\\\therefore~P+Q+R+S= \Huge\ \ \ \ \ \ \ \color{#D61F06}{13}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...