Big Choice, No Backsies

Is ( 600 300 ) \dbinom{600}{300} divisible by 13 13 ?

Yes Lack of information This question is flawed No

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Nov 27, 2014

( 600 300 ) = 600 × 599 × 598 × . . . 301 1 × 2 × 3 × . . . 300 = 1 3 m 1 3 n Q \begin{pmatrix} 600 \\ 300 \end{pmatrix} = \dfrac {600\times 599\times 598\times ... 301} {1\times 2\times 3\times ... 300} = \dfrac {13^m}{13^n} Q ,

where m m , n n and Q Q are integers.

If m > n m > n then ( 600 300 ) \begin{pmatrix} 600 \\ 300 \end{pmatrix} is divisible by 13 13 .

The power p 13 ( n ) p_{13} (n) of the factor 13 of n ! n! is given by:

p 13 ( n ) = n 13 + n 1 3 2 + n 1 3 3 + . . . p_{13} (n) = \lfloor \frac {n}{13} \rfloor + \lfloor \frac {n}{13^2} \rfloor + \lfloor \frac {n}{13^3} \rfloor +... ,

where \lfloor \space \space \rfloor is the greatest integer function.

Now,

p 13 ( 600 ) = 600 13 + 600 169 = 46 + 3 = 49 p_{13} (600) = \lfloor \frac {600}{13} \rfloor + \lfloor \frac {600}{169} \rfloor = 46 + 3 = 49

p 13 ( 300 ) = 300 13 + 300 169 = 23 + 1 = 24 p_{13} (300) = \lfloor \frac {300}{13} \rfloor + \lfloor \frac {300}{169} \rfloor = 23 + 1 = 24

We note that m = p 13 ( 600 ) p 13 ( 300 ) = 49 24 = 25 m = p_{13} (600) - p_{13} (300) = 49 - 24 = 25 and n = p 13 ( 300 ) = 24 n = p_{13} (300) = 24 . Since m > n m > n , ( 600 300 ) \begin{pmatrix} 600 \\ 300 \end{pmatrix} is d i v i s i b l e \boxed {divisible} by 13 13 .

Your one step is wrong

Rajdeep Dhingra - 6 years, 3 months ago
Curtis Clement
Feb 16, 2015

The largest power of 13 in n ! {n!} (for n is any natural number) is given by: k = 1 n 1 3 k \displaystyle\sum_{k=1}^{\infty} \lfloor \frac{n}{13^k} \rfloor (the upper limit is infinity because we eventually obtain 0 + 0 +...) In this case k = 1 600 1 3 k = 600 13 + 600 1 3 2 = 46 + 3 = 49 \displaystyle\sum_{k=1}^{\infty} \lfloor \frac{600}{13^k} \rfloor = \lfloor \frac{600}{13} \rfloor + \lfloor \frac{600}{13^2} \rfloor = 46 + 3 = 49 k = 1 300 1 3 k = 300 13 + 300 1 3 2 = 23 + 1 = 24 \displaystyle\sum_{k=1}^{\infty} \lfloor \frac{300}{13^k} \rfloor = \lfloor \frac{300}{13} \rfloor + \lfloor \frac{300}{13^2} \rfloor = 23 + 1 = 24 Now if ϕ {\phi} represents the value of the binomial that doesn't contain powers of 13 then we have: ( 600 300 ) = 1 3 49 1 3 24 × 1 3 24 . ϕ = 1 3 49 1 3 48 . ϕ = 13 ϕ 13 ( 600 300 ) {600 \choose\ 300} = \frac{13^{49}}{13^{24} \times\ 13^{24}}.\phi = \frac{13^{49}}{13^{48}}.\phi = 13\phi \therefore\ 13| {600 \choose\ 300}

Shivamani Patil
Nov 13, 2014

Use luca's theorem.After writing 600 and 300 in base 13 we find that one digit of 300 exceeds 600. So remainder is 0.

what is the meaning of that notation given in the question

Sai Yaswanth - 6 years, 7 months ago

Log in to reply

It is combinations symbol and is equivalent to 600 ! ( 600 300 ) ! 300 ! = 600 ! 300 ! 300 ! \frac { 600! }{ \left( 600-300 \right) !300! } =\frac { 600! }{ 300!300! } .

shivamani patil - 6 years, 7 months ago
Nurlan Zhusupov
Sep 2, 2014

600 / 13 + 600/169 - 2 * (300 / 13 + 300/169) > 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...