Big Derivatives.

Calculus Level 2

If f ( x ) = sin ( x 3 ) f(x)=\sin(x^3) then what is f ( 15 ) ( 0 ) f^{(15)}(0) equal to?

Notation: f ( n ) ( x ) f^{(n)}(x) denotes the n n th derivative of f ( x ) f(x) .

10 ! 5 ! \frac{10!}{5!} 15 ! 5 ! \frac{15!}{5!} 14 ! 5 ! \frac{14!}{5!} 20 ! 5 ! \frac{20!}{5!} 25 ! 5 ! \frac{25!}{5!}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 26, 2018

f ( x ) = sin ( x 3 ) By Maclaurin series = x 3 x 9 3 ! + x 15 5 ! f ( 15 ) ( x ) = 15 ! 5 ! 18 ! x 3 3 ! 6 ! + 21 ! x 6 6 ! 7 ! f ( 15 ) ( 0 ) = 15 ! 5 ! \begin{aligned} f(x) & = \color{#3D99F6} \sin (x^3) & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \color{#3D99F6} x^3 - \frac {x^9}{3!} + \frac {x^{15}}{5!} - \cdots \\ \implies f^{(15)} (x) & = \frac {15!}{5!} - \frac {18! x^3}{3! 6!} + \frac {21! x^6}{6! 7!} - \cdots \\ f^{(15)} (0) & = \boxed{\dfrac {15!}{5!}} \end{aligned}

@Hana Wehbi , it is better to use f ( 15 ) ( 0 ) f^{(15)} (0) and mention that "where f ( n ) ( x ) f^{(n)}(x) denotes the n n th derivative of f ( x ) f(x) ". Because f 3 ( x ) f^3(x) can also mean ( f ( x ) ) 3 (f(x))^3 or f ( f ( f ( x ) ) ) f(f(f(x))) . Strictly, "If ...." is not full sentence. It should not end with a period but a comma.

Chew-Seong Cheong - 2 years, 8 months ago

Log in to reply

Ok, l will. Thank you for pointing this.

Hana Wehbi - 2 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...