Big Integrals

Calculus Level 3

0 π 2 ( cos 2 ( cos x ) + sin 2 ( sin x ) ) d x = π A \int_{0}^{\frac{\pi}{2}} (\cos^2(\cos x)+\sin^2(\sin x)) dx= \frac{\pi}{A} What is A = ? A=?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Brian Moehring
Oct 7, 2018

Note that 0 π / 2 cos 2 ( cos x ) d x = 0 π / 2 cos 2 ( sin ( π 2 x ) ) d x = π / 2 0 cos 2 ( sin u ) ( d u ) = 0 π / 2 cos 2 ( sin u ) d u \int_0^{\pi/2} \cos^2(\cos x)\, dx = \int_0^{\pi/2} \cos^2\left(\sin \left(\frac{\pi}{2} - x\right)\right)\, dx = \int_{\pi/2}^0 \cos^2(\sin u)\, (-du) = \int_0^{\pi/2} \cos^2(\sin u)\,du

Therefore, if we write that last integral using x , x, we can use write 0 π / 2 ( cos 2 ( cos x ) + sin 2 ( sin x ) ) d x = 0 π / 2 ( cos 2 ( sin x ) + sin 2 ( sin x ) ) d x = 0 π / 2 ( 1 ) d x = π 2 \int_0^{\pi/2} \Big(\cos^2(\cos x) + \sin^2(\sin x)\Big)\, dx = \int_0^{\pi/2} \Big(\cos^2(\sin x) + \sin^2(\sin x)\Big)\, dx = \int_0^{\pi/2} \Big(1\Big)\, dx = \frac{\pi}{2} giving the answer of A = 2 A = \boxed{2}

Thank you, nice solution.

Hana Wehbi - 2 years, 8 months ago

I = 0 π 2 ( cos 2 ( cos x ) + sin 2 ( sin x ) ) d x By identity a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π 2 ( cos 2 ( cos x ) + sin 2 ( sin x ) + cos 2 ( cos ( π 2 x ) ) + sin 2 ( sin ( π 2 x ) ) ) d x Since sin ( π 2 θ ) = cos θ and cos ( π 2 θ ) = sin θ = 1 2 0 π 2 ( cos 2 ( cos x ) + sin 2 ( sin x ) + cos 2 ( sin x ) + sin 2 ( cos x ) ) d x and sin 2 θ + cos 2 θ = 1 = 1 2 0 2 d x = 0 d x = π 2 \begin{aligned} I & = \int_0^\frac \pi 2 \left(\cos^2(\cos x) + \sin^2 (\sin x)\right) dx & \small \color{#3D99F6} \text{By identity }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_0^\frac \pi 2 \left(\cos^2(\cos x) + \sin^2 (\sin x) + \cos^2\left(\cos \left(\frac \pi 2 - x\right) \right) + \sin^2 \left(\sin \left(\frac \pi 2 - x\right) \right) \right) dx & \small \color{#3D99F6} \text{Since }\sin \left(\frac \pi 2- \theta \right) = \cos \theta \text{ and }\cos \left(\frac \pi 2 - \theta \right) = \sin \theta \\ & = \frac 12 \int_0^\frac \pi 2 \left({\color{#3D99F6}\cos^2(\cos x)} + \color{#D61F06}\sin^2 (\sin x) + \cos^2 (\sin x) + \color{#3D99F6} \sin^2 (\cos x) \right) dx & \small \color{#3D99F6} \text{and } \sin^2 \theta + \cos^2 \theta = 1 \\ & = \frac 12 \int_0^\infty 2 \ dx = \int_0^\infty \ dx = \frac \pi 2 \end{aligned}

Therefore, A = 2 A = \boxed 2 .

Thank you, nice solution.

Hana Wehbi - 2 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...