∫ 0 2 π ( cos 2 ( cos x ) + sin 2 ( sin x ) ) d x = A π What is A = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Thank you, nice solution.
I = ∫ 0 2 π ( cos 2 ( cos x ) + sin 2 ( sin x ) ) d x = 2 1 ∫ 0 2 π ( cos 2 ( cos x ) + sin 2 ( sin x ) + cos 2 ( cos ( 2 π − x ) ) + sin 2 ( sin ( 2 π − x ) ) ) d x = 2 1 ∫ 0 2 π ( cos 2 ( cos x ) + sin 2 ( sin x ) + cos 2 ( sin x ) + sin 2 ( cos x ) ) d x = 2 1 ∫ 0 ∞ 2 d x = ∫ 0 ∞ d x = 2 π By identity ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x Since sin ( 2 π − θ ) = cos θ and cos ( 2 π − θ ) = sin θ and sin 2 θ + cos 2 θ = 1
Therefore, A = 2 .
Thank you, nice solution.
Problem Loading...
Note Loading...
Set Loading...
Note that ∫ 0 π / 2 cos 2 ( cos x ) d x = ∫ 0 π / 2 cos 2 ( sin ( 2 π − x ) ) d x = ∫ π / 2 0 cos 2 ( sin u ) ( − d u ) = ∫ 0 π / 2 cos 2 ( sin u ) d u
Therefore, if we write that last integral using x , we can use write ∫ 0 π / 2 ( cos 2 ( cos x ) + sin 2 ( sin x ) ) d x = ∫ 0 π / 2 ( cos 2 ( sin x ) + sin 2 ( sin x ) ) d x = ∫ 0 π / 2 ( 1 ) d x = 2 π giving the answer of A = 2