Big Powers of 2

We let k k be the integer defined as the smallest integer larger than 1 0 100 10^{100} such that the first six digits of 2 k 2^k are 100000 (i.e. 2 k = 100000 2^k = 100000\ldots ). If k = 1 0 100 + n k = 10^{100}+n , what is the value of n n ?


The answer is 13974.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Dec 9, 2015

We want to find N N N \in \mathbb{N} such that 1 0 N 2 k < 1.00001 × 1 0 N N k log 10 2 < N + log 10 1.00001 N ( 1 0 100 + n ) log 10 2 < N + log 10 1.00001 0 { { 1 0 100 log 10 2 } + n log 10 2 } < log 10 1.00001 \begin{array}{rcccl} 10^N & \le & 2^k & < & 1.00001 \times 10^N \\ N & \le & k \log_{10}2 & < & N + \log_{10}1.00001 \\ N & \le & (10^{100} + n)\log_{10}2 & < & N + \log_{10}1.00001 \\ 0 & \le & \big\{ \{10^{100}\log_{10}2\} + n\log_{10}2 \big\} & < &\log_{10}1.00001 \end{array} where { x } \{x\} is the fractional part of x x . Since (thanks to Mathematica) { 1 0 100 log 10 2 } = 0.4068447719... \{ 10^{100} \log_{10}2\} \,=\, 0.4068447719... , we want to find the smallest n n such that 0 { 0.4068447719 + n log 10 2 } < 4.34292 × 1 0 6 . 0 \; \le \; \big\{ 0.4068447719 + n \log_{10}2 \big\} \; < \; 4.34292 \times 10^{-6} \; . A computer evaluation of F ( n ) = { 0.4068447719 + n log 10 2 } F(n) \,=\, \big\{ 0.4068447719 + n \log_{10}2\big\} for 1 n 15000 1 \le n \le 15000 shows that F ( 13974 ) = 4.18 × 1 0 6 F(13974) = 4.18 \times 10^{-6} , while the next smallest value of F ( n ) F(n) is F ( 673 ) = 3.19 × 1 0 5 F(673) = 3.19 \times 10^{-5} . Thus the answer is n = 13974 n = 13974 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...