Big Summation II

Algebra Level 2

Evaluate:

1 log 2 2020 + 1 log 3 2020 + 1 log 4 2020 + + 1 log 2020 2020 = ? \frac{1}{\log_2 {2020}} +\frac{1}{\log_3 {2020}} + \frac{1}{\log_4 {2020}}+\dots +\frac{1}{\log_{2020} {2020}}=?

1 log 2019 2020 \frac{1}{\log_{2019} {2020}} 1 1 2020 1 log 2018 2020 \frac{1}{\log_{2018} {2020}} 1 log 2020 ! 2020 \frac{1}{\log_{2020!}{2020}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

X = 1 log 2 2020 + 1 log 3 2020 + 1 log 4 2020 + + 1 log 2020 2020 Note that log b a = log a log b = log 2 + log 3 + log 4 + + log 2020 log 2020 and log a b = log a + log b = log 2020 ! log 2020 = 1 log 2020 ! 2020 \begin{aligned} X & = \frac 1{\log_2 2020} + \frac 1{\log_3 2020} + \frac 1{\log_4 2020} + \cdots + \frac 1{\log_{2020} 2020} & \small \blue{\text{Note that }\log_b a = \frac {\log a}{\log b}} \\ & = \frac {\log 2 + \log 3 + \log 4 + \cdots + \log 2020}{\log 2020} & \small \blue{\text{and }\log ab = \log a + \log b} \\ & = \frac {\log 2020!}{\log 2020} \\ & = \boxed{\frac 1{\log_{2020!}2020}} \end{aligned}

Hana Wehbi
Dec 30, 2019

We know that 1 log a N = log N a \boxed{\frac{1}{\log_a {N}} = \log_{N} a}

Thus, the expression 1 log 2 2020 + 1 log 3 2020 + 1 log 4 2020 + + 1 log 2020 2020 \frac{1}{\log_2 {2020}} +\frac{1}{\log_3 {2020}} + \frac{1}{\log_4 {2020}}+\dots +\frac{1}{\log_{2020} {2020}} can be written as: = log 2020 2 + log 2020 3 + + log 2020 2020 = \log_{2020} 2 + \log_{2020} 3+ \dots+ \log_{2020} {2020}

= log 2020 ( 1 × 2 × 3 × × 2020 ) = log 2020 2020 ! =\log_{2020}( 1\times2\times3\times\dots\times2020) = \log_{2020} 2020! ( log a N + log a M = log a M . N ) \hspace{6cm}\color{#69047E}({\log_a N +\log_a M = \log_a M.N})

= 1 log 2020 ! 2020 = \frac {1}{\log_{2020!}{2020}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...