But My Calculator Can't Handle It!

Algebra Level 4

6666666 68 1 0 5 digits 2 \large{{\underbrace{6666666\ldots68}_{10^5 \text{ digits } }}^2}

Find the sum of the digits of the number above (when it is expanded).


The answer is 600004.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Arjen Vreugdenhil
Mar 13, 2016

Lemma: let d d be a digit and n n a positive integer. Then the number consisting of the digit d d repeated n n times is equal to d d d n = d 9 1 0 n d 9 . \underbrace{dd\cdots d}_{n} = \frac d 9 \cdot 10^n - \frac d 9.

We apply this to the given number: A n = 66 6 n 1 8 = 66 6 n + 2 = 2 3 1 0 n + 4 3 . A_n = \underbrace{66\cdots6}_{n-1}8 = \underbrace{66\cdots6}_{n} + 2 = \frac 23 \cdot 10^n + \frac 43. Square this: A n 2 = ( 2 3 1 0 n + 4 3 ) 2 = 4 9 1 0 2 n + 16 9 1 0 n + 16 9 = 4 9 1 0 2 n + 2 1 0 n 2 9 1 0 n + 2 2 9 . A_n^2 = \left(\frac 23\cdot 10^n + \frac 43\right)^2 = \frac 49\cdot 10^{2n} + \frac{16}9\cdot 10^n + \frac{16}9 \\ = \frac 49\cdot 10^{2n} + 2\cdot 10^n - \frac29\cdot 10^n + 2 - \frac29. We use the Lemma again, now in the opposite direction: A n 2 = ( 44 4 2 n + 4 9 ) + 2 1 0 n ( 22 2 n + 2 9 ) + 2 2 9 = ( 44 4 n 00 0 n + 44 4 n ) 22 2 n + 2 1 0 n + 2 = 44 4 n 00 0 n + ( 44 4 n 22 2 n ) + 2 1 0 n + 2 = 44 4 n 00 0 n + 22 2 n + 2 1 0 n + 2 = 44 4 n 22 2 n + 2 1 0 n + 2 = 44 4 n 1 6 22 2 n 1 4. A_n^2 = \left(\underbrace{44\cdots4}_{2n} + \frac49\right) + 2\cdot 10^n - \left(\underbrace{22\cdots2}_{n} + \frac29\right) + 2 - \frac29 \\ = \left(\underbrace{44\cdots4}_{n}\underbrace{00\cdots0}_{n} + \underbrace{44\cdots4}_{n}\right) - \underbrace{22\cdots2}_{n} + 2\cdot 10^n + 2 \\ = \underbrace{44\cdots4}_{n}\underbrace{00\cdots0}_{n} + \left(\underbrace{44\cdots4}_{n} - \underbrace{22\cdots2}_{n}\right) + 2\cdot 10^n + 2 \\ = \underbrace{44\cdots4}_{n}\underbrace{00\cdots0}_{n} + \underbrace{22\cdots2}_{n} + 2\cdot 10^n + 2 \\ = \underbrace{44\cdots4}_{n}\underbrace{22\cdots2}_{n} + 2\cdot 10^n + 2 \\ = \underbrace{44\cdots4}_{n-1}6\underbrace{22\cdots2}_{n-1}4. The sum of digits is therefore 4 ( n 1 ) + 6 + 2 ( n 1 ) + 4 = 6 n + 4 , 4(n-1) + 6 + 2(n-1) + 4 = 6n + 4, which for n = 1 0 5 n = 10^5 results in 600 004 \boxed{600\:004} .

Abc Xyz
Mar 11, 2016

Here we can consider the pattern followed by the squares of 68.

6 8 2 = 4624 68^2=4624

66 8 2 = 446224 668^2=446224

666 8 2 = 44462224 6668^2=44462224

We can notice that the number of 6 in the number is same as number of 2 & 4 in the square of the number. Also there is only one six and one four in the middle and end respectively.

In the question there are ( 1 0 5 1 ) 6 s (10^5 -1) 6's

Therefore we need the sum of:

4 ( 1 0 5 1 ) + 6 + 2 ( 1 0 5 1 ) + 4 4(10^5-1) + 6 + 2(10^5-1) + 4 =

600004 \boxed{600004}

It's a nice pattern, but is it a proof?

Arjen Vreugdenhil - 5 years, 3 months ago

The trickiest part of this problem is that it's not asking you the number of the digits, but the sum of them. 4(10^5-1) + 6 +2(10^5-1) +4, 6(10^5-1) +10, 600000-6+10, 600000+4, 600004

Weston Hettinger - 5 years, 3 months ago

Did the same way

Sparsh Sarode - 5 years ago
Terry Smith
Mar 14, 2016

Interestingly, Inline Ruby CAN actually handle it..

a=('6'*99_999+'8').to_i

b = a*a

b.to_s.split('').map{|l|l.to_i}.inject(0){|s,l|s+l}

600004

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...