Bilinear Recursion - 2

Calculus Level 5

A sequence is defined recursively by

x n + 1 = 6 x n + 35 4 x n + 10 x_{n+1} = \dfrac{ 6 x_{n} + 35 }{ 4 x_{n} + 10 }

where x 0 = 10 x_0 = 10 . One can show that the sequence { x n } \{ x_n \} is given in closed form by

x n = a + b λ n c λ n d x_n = \dfrac{ a + b \lambda^n }{ c \lambda^n - d }

where a a , b b , c c , and d d are positive integers, and gcd ( a , b , c , d ) = 1 \gcd(a, b, c, d) = 1 , and λ \lambda is a negative integer.

Find a + b + c + d + λ a + b + c + d + | \lambda |


The answer is 113.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mark Hennings
Nov 12, 2020

Define sequence of vectors r n \mathbf{r}_n by the formulae r n + 1 = A r n = ( 6 35 4 10 ) r n n 0 r 0 = ( 10 1 ) \mathbf{r}_{n+1} \; = \; A\mathbf{r}_n \; = \; \left(\begin{array}{cc} 6 & 35 \\ 4 & 10 \end{array}\right)\mathbf{r}_n \hspace{1cm} n \ge 0 \hspace{2cm} \mathbf{r}_0 \; = \; \binom{10}{1} Now the matrix A A has eigensystem A ( 5 2 ) = 20 ( 5 2 ) A ( 7 2 ) = 4 ( 7 2 ) A\binom{5}{2} \; = \; 20\binom{5}{2} \hspace{2cm} A\binom{7}{-2} \; = \; -4\binom{7}{-2} Since ( 10 1 ) = 1 8 [ 9 ( 5 2 ) + 5 ( 7 2 ) ] \binom{10}{1} \; = \; \frac18\left[9\binom{5}{2} + 5\binom{7}{-2}\right] we deduce that r n = 1 8 [ 9 ( 5 2 ) 2 0 n + 5 ( 7 2 ) ( 4 ) n ] n 0 \mathbf{r}_n \; = \; \frac18\left[9\binom{5}{2}20^n + 5\binom{7}{-2}(-4)^n\right] \hspace{2cm} n \ge 0 and x n x_n is then the ratio of the first and second coefficients of r n \mathbf{r}_n , so that x n = 45 × 2 0 n + 35 × ( 4 ) n 18 × 2 0 n 10 × ( 4 ) n = 45 ( 5 ) n + 35 18 ( 5 ) n 10 n 0 x_n \; = \; \frac{45 \times 20^n + 35 \times (-4)^n}{18 \times 20^n - 10 \times (-4)^n} \; = \; \frac{45(-5)^n + 35}{18(-5)^n - 10} \hspace{2cm} n \ge 0 so that a + b + c + d + λ = 45 + 35 + 18 + 10 + 5 = 113 a + b + c + d + |\lambda| = 45 + 35 +18 + 10 + |-5| = \boxed{113} .

An elegant solution. Just what we'd expect from @Mark Hennings

Hosam Hajjir - 7 months ago

It's also interesting to find that the eigenvectors are related to the fixed points of the recursion (I.e. x=(6x+35)/(4x+10)).

Alice Smith - 7 months ago

Log in to reply

The matrix A A can act on the space of rays through the origin in R 2 \mathbb{R}^2 . The real number x x corresponds to the ray { ( t x t ) : t R } \{\binom{tx}{t}\,:\, t \in \mathbb{R}\} , while the ray { ( 0 t ) : t R } \{\binom{0}{t}\,:\,t \in \mathbb{R}\} corresponds to the point \infty . Thus the transformation A A on R 2 \mathbb{R}^2 becomes the transformation A ^ \hat{A} from R { } \mathbb{R}\cup\{\infty\} to itself given by x 6 x + 35 4 x + 10 3 2 x \; \mapsto \frac{6x + 35}{4x + 10} \hspace{2cm} \infty \; \mapsto \tfrac32 Then x x is a fixed point of A ^ \hat{A} precisely when ( x 1 ) \binom{x}{1} is an eigenvector of A A .

Mark Hennings - 7 months ago
Chew-Seong Cheong
Nov 12, 2020

If we just want to find the values of a a , b b , c c , d d , and λ \lambda , without deriving them, we can use the actual values of x n x_n and solve the simultaneous equations.

From x n = a + b λ n c λ n d lim n x n = lim n a + b λ n c λ n d = lim n a λ n + b c d λ n = b c \displaystyle x_n = \frac {a+b\lambda^n}{c\lambda^n - d} \implies \lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac {a+b\lambda^n}{c\lambda^n - d} = \lim_{n \to \infty} \frac {\frac a{\lambda^n}+b}{c - \frac d{\lambda^n}} = \frac bc for λ > 1 |\lambda| > 1 . This implies that x n x_n converges and let its limit be L L . Then

x n + 1 = 6 x n + 35 4 x n + 10 when n L = 6 L + 35 4 L + 10 4 L 2 + 10 L = 6 L + 35 4 L 2 + 4 L 35 = 0 ( 2 L 5 ) ( 2 L + 7 ) = 0 Since x n > 0 n 0 L > 0 L = 5 2 b c = 5 2 c = 2 5 b \begin{aligned} x_{n+1} & = \frac {6x_n+35}{4x_n+10} & \small \blue{\text{when }n \to \infty} \\ \implies L & = \frac {6L+35}{4L+10} \\ 4L^2 + 10L & = 6L + 35 \\ 4L^2 + 4L - 35 & = 0 \\ (2L - 5)(2L + 7) & = 0 & \small \blue{\text{Since }x_n > 0\ \forall n \ge 0 \implies L > 0} \\ \implies L & = \frac 52 \\ \frac bc & = \frac 52 \implies c = \frac 25 b \end{aligned}

Now we have:

{ x 0 = 10 = a + b c d a + b = 10 c 10 d . . . ( 1 ) x 1 = 19 10 = a + b λ c λ d 10 a + 10 b λ = 19 c λ 19 d . . . ( 2 ) x 2 = 29 11 = a + b λ 2 c λ 2 d 11 a + 11 b λ 2 = 29 c λ 2 29 d . . . ( 3 ) \begin{cases} x_0 = 10 = \dfrac {a+b}{c-d} & \implies a + b = 10c - 10 d & ...(1) \\ x_1 = \dfrac {19}{10} = \dfrac {a+b\lambda}{c\lambda-d} & \implies 10a + 10b\lambda = 19c\lambda - 19 d & ...(2) \\ x_2 = \dfrac {29}{11} = \dfrac {a+b\lambda^2}{c\lambda^2-d} & \implies 11a + 11b\lambda^2 = 29c\lambda^2 - 29 d & ...(3) \end{cases}

{ ( 2 ) 10 ( 1 ) : 10 b ( λ 1 ) = c ( 19 λ 100 ) + 81 d . . . ( 4 ) ( 3 ) 11 ( 1 ) : 11 b ( λ 2 1 ) = c ( 29 λ 2 110 ) + 81 d . . . ( 5 ) \begin{cases} (2) - 10(1): & 10b(\lambda - 1) = c(19\lambda - 100) + 81d & ...(4) \\ (3) - 11(1): & 11b(\lambda^2 - 1) = c(29\lambda^2 - 110) + 81d & ...(5) \end{cases}

( 5 ) ( 4 ) : b ( 11 λ 2 10 λ 1 ) = c ( 29 λ 2 19 λ 10 ) Since c = 2 5 b 55 λ 2 50 λ 5 = 58 λ 2 38 λ 20 3 λ 2 + 12 λ 15 = 0 λ 2 + 4 λ 5 = 0 ( λ + 5 ) ( λ 1 ) = 0 Since λ < 0 λ = 5 \begin{aligned} \implies (5)-(4): \quad b(11\lambda^2 - 10 \lambda -1) & = c(29\lambda^2 - 19\lambda - 10) & \small \blue{\text{Since }c = \frac 25 b} \\ 55 \lambda^2 - 50 \lambda - 5 & = 58 \lambda^2 - 38 \lambda - 20 \\ 3 \lambda^2 + 12 \lambda - 15 & = 0 \\ \lambda^2 + 4 \lambda - 5 & = 0 \\ (\lambda + 5)(\lambda - 1) & = 0 & \small \blue{\text{Since }\lambda < 0} \\ \implies \lambda & = - 5 \end{aligned}

From ( 4 ) : 60 b = 2 5 b ( 195 ) + 81 d d = 2 9 b (4): \quad -60 b = \dfrac 25 b (-195) + 81 d \implies d = \dfrac 29 b . From ( 1 ) : a + b = 4 b 20 9 a = 7 9 b (1): \quad a + b = 4 b - \dfrac {20}9 \implies a = \dfrac 79 b . Then we have:

x n = 7 9 + λ n 2 5 λ n 2 9 = 35 + 45 λ n 18 λ n 10 x_n = \frac {\frac 79 + \lambda^n}{\frac 25\lambda^n - \frac 29} = \frac {35+45\lambda^n}{18\lambda^n - 10}

Therefore a + b + c + d + λ = 35 + 45 + 18 + 10 + 5 = 113 a+b+c+d+|\lambda| = 35+45+18+10+5 = \boxed{113} .

Hosam Hajjir
Nov 12, 2020

Let's consider the general bilinear recursion,

x n + 1 = a x n + b c x n + d x_{n+1} = \dfrac{a x_n + b} { c x_n + d }

Pulling the a a and c c out, this becomes,

x n + 1 = a c ( x n + ( b / a ) ) ( x n + ( d / c ) ) x_{n+1} = \dfrac{a}{c} \dfrac{( x_n + (b/a) ) } {( x_n + (d/c)) }

which, after dividing the numerator by the denominator, becomes,

x n + 1 = a c ( 1 + ( b / a d / c ) x n + ( d / c ) ) x_{n+1} = \dfrac{a}{c} ( 1 + \dfrac{(b/a - d/c)} { x_n + (d/c) } )

Adding ( d / c ) (d/c) to both sides,

x n + 1 + ( d / c ) = a + d c + a c ( b / a d / c ) x n + ( d / c ) x_{n+1} + (d/c) = \dfrac{a + d}{c} + \dfrac{a}{c} \dfrac{(b/a - d/c)}{ x_n +(d/c) }

Let y n = x n + ( d / c ) y_n = x_n + (d/c) , then

y n + 1 = a + d c + a c ( b / a d / c ) y n y_{n+1} = \dfrac{a + d}{c} + \dfrac{a}{c} \dfrac{ (b/a - d/c) } { y_n }

Now we'll make the magic substitution (Source: Introduction to Difference Equations, by Samuel Goldberg, 1958), for this problem, namely, we'll let y n = z n + 1 z n y_n = \dfrac{z_{n+1} }{z_n} then, we have,

z n + 2 z n + 1 = a + d c + a c ( b / a d / c ) z n z n + 1 \dfrac{z_{n+2}}{z_{n+1}} = \dfrac{a + d}{c} + \dfrac{a}{c} (b/a - d/c) \dfrac{ z_n }{z_{n+1}}

multiply through by z n + 1 z_{n+1} , to get,

z n + 2 = a + d c z n + 1 + a c ( b / a d / c ) z n z_{n+2} = \dfrac{a + d}{c} z_{n+1} + \dfrac{a}{c} (b/a - d/c) z_n

which is a standard second order linear difference equation, whose solution is readily available.

Let's substitute the given parameters of the original recursive equation, then,

z n + 2 = 6 + 10 4 z n + 1 + 6 4 ( 35 / 6 10 / 4 ) z n z_{n+2} = \dfrac{6 + 10}{4} z_{n+1} + \dfrac{6}{4} (35/6 - 10/4) z_n

which after simplifying becomes,

z n + 2 = 4 z n + 1 + 5 z n z_{n+2} = 4 z_{n+1} + 5 z_n

or

z n + 2 4 z n + 1 5 z n = 0 z_{n+2} - 4 z_{n+1} - 5 z_n = 0

The characteristic equation of this difference equation is,

m 2 4 m 5 = 0 m^2 - 4 m - 5 = 0

and this factors into ( m 5 ) ( m + 1 ) = 0 (m - 5)(m + 1) = 0 . Thus, the solution of the difference equation is of the form,

z n = A ( 1 ) n + B ( 5 ) n z_n = A (-1)^n + B (5)^n

Since x 0 = 10 x_0 = 10 , then y 0 = 10 + 5 2 = 25 2 y_0 = 10 + \dfrac{5}{2} = \dfrac{25}{2} , therefore, we can choose z 0 = 1 z_0 = 1 , then it follows that z 1 = 25 2 z_1 = \dfrac{25}{2}

Now, we can construct two linear equations in the unknown coefficients A A and B B , namely,

1 = A + B 1 = A + B , and

25 2 = A + 5 B \dfrac{25}{2} = - A + 5 B

Adding, gives us, 6 B = 27 2 6 B = \dfrac{27}{2} , so that B = 27 12 B = \dfrac{27}{12} , and therefore, A = 1 27 12 = 5 4 A = 1 - \dfrac{27}{12} = -\dfrac{5}{4}

Hence, z n = 5 4 ( 1 ) n + 27 12 ( 5 ) n z_n = -\dfrac{5}{4} (-1)^n + \dfrac{27}{12} (5)^n , and it follows that y n y_n is given by,

y n = 15 ( 1 ) n + 1 + 27 ( 5 ) n + 1 15 ( 1 ) n + 27 ( 5 ) n = 15 ( 1 ) n + 135 ( 5 ) n 15 ( 1 ) n + 27 ( 5 ) n = 5 + 45 ( 5 ) n 5 + 9 ( 5 ) n y_n = \dfrac{ - 15 (-1)^{n+1} + 27 (5)^{n+1} }{ - 15 (-1)^n + 27 (5)^n } = \dfrac{ 15 (-1)^n + 135 (5)^n }{ - 15 (-1)^n + 27 (5)^n } = \dfrac{ 5 + 45 (-5)^n}{ -5 + 9 (-5)^n }

Therefore,

x n = y n 5 2 = 10 + 90 ( 5 ) n + 25 45 ( 5 ) n 10 + 18 ( 5 ) n = 35 + 45 ( 5 ) n 18 ( 5 ) n 10 x_n = y_n - \dfrac{5}{2} = \dfrac{ 10 + 90 (-5)^n + 25 - 45 (-5)^n }{ -10 + 18 (-5)^n } = \dfrac{ 35 + 45 (-5)^n }{18 (-5)^n - 10 }

which is in the form specified by the problem, hence λ = 5 \lambda = -5 and a , b , c , d = 35 , 45 , 18 , 10 a, b, c, d = 35, 45, 18, 10 .

Therefore, the answer is 35 + 45 + 18 + 10 + 5 = 113 35 + 45 + 18 + 10 + 5 = \boxed{113}

God, I love problems with magical solutions that I've never learned about.

Halim Amran - 6 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...