Bingo

Geometry Level 3

sin ( π 5 ) sin ( 2 π 5 ) sin ( 3 π 5 ) sin ( 4 π 5 ) \sin \left( \frac{\pi}{5} \right) \sin \left( \frac{2\pi}{5} \right) \sin \left( \frac{3\pi}{5} \right) \sin \left( \frac{4\pi}{5} \right)

If the value of the expression is equals to A B \dfrac AB for coprime positive integers A A and B B , submit your answer as B A B - A .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Raj Rajput
Oct 8, 2015

sin π 5 sin 2 π 5 sin 3 π 5 sin 4 π 5 = sin π 5 sin 2 π 5 sin 2 π 5 sin π 5 [ sin k π 5 = sin 5 k π 5 ] = sin 2 π 5 sin 2 2 π 5 [ cos 2 k π 5 = 1 sin 2 k π 5 ] = 1 4 ( 1 cos 2 π 5 ) ( 1 cos 4 π 5 ) [ cos 2 π 5 + cos 4 π 5 = 1 2 ] = 1 4 ( 1 cos 2 π 5 ) ( 3 2 + cos 2 π 5 ) = 1 4 ( 3 2 1 2 cos 2 π 5 cos 2 2 π 5 ) = 1 4 ( 3 2 1 2 cos 2 π 5 1 2 1 2 cos 4 π 5 ) = 1 4 ( 1 1 2 [ cos 2 π 5 + cos 4 π 5 ] ) = 1 4 ( 1 1 2 [ 1 2 ] ) = 5 16 B A = 11 \begin{array} {rll} \sin \frac{\pi}{5} \sin \frac{2\pi}{5} \sin \color{#3D99F6} {\frac{3\pi}{5}} \sin \color{#D61F06}{\frac{4\pi}{5}} & = \sin \frac{\pi}{5} \sin \frac{2\pi}{5} \sin \color{#3D99F6} {\frac{2\pi}{5}} \sin \color{#D61F06}{\frac{\pi}{5}} & \quad \quad \small \color{#3D99F6} {\left[ \sin \frac{k\pi}{5} = \sin \frac{5-k\pi}{5} \right]} \\ & = \sin^2 \frac{\pi}{5} \sin^2 \frac{2\pi}{5} & \quad \quad \small \color{#3D99F6} {\left[ \cos \frac{2k\pi}{5} = 1 - \sin^2 \frac{k\pi}{5} \right]} \\ & = \frac{1}{4} \left(1-\cos \frac{2\pi}{5} \right) \left(1-\cos \frac{4\pi}{5} \right) & \quad \quad \small \color{#3D99F6} {\left[ \cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} = - \frac{1}{2} \right]} \\ & = \frac{1}{4} \left(1-\cos \frac{2\pi}{5} \right) \left(\frac{3}{2} + \cos \frac{2\pi}{5} \right) \\ & = \frac{1}{4} \left(\frac{3}{2} - \frac{1}{2} \cos \frac{2\pi}{5} - \color{#3D99F6} {\cos^2 \frac{2\pi}{5}} \right) \\ & = \frac{1}{4} \left(\frac{3}{2} - \frac{1}{2} \cos \frac{2\pi}{5} - \color{#3D99F6} {\frac{1}{2} - \frac{1}{2} \cos \frac{4\pi}{5}} \right) \\ & = \frac{1}{4} \left(1 - \frac{1}{2} \left[\color{#3D99F6}{\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5}} \right] \right) \\ & = \frac{1}{4} \left(1 - \frac{1}{2} \left[\color{#3D99F6}{-\frac{1}{2}} \right] \right) = \frac{5}{16} \\ & \\ \Rightarrow B - A & = \boxed{11} \end{array}

sin π 5 sin 2 π 5 sin 3 π 5 sin 4 π 5 = sin π 5 sin 2 π 5 sin 2 π 5 sin π 5 = sin 2 π 5 sin 2 2 π 5 sin π 5 = 5 5 8 sin 2 π 5 = 5 + 5 8 sin π 5 sin 2 π 5 sin 3 π 5 sin 4 π 5 = 5 5 8 5 5 8 20 8 2 = 5 16 = A B B A = 11 \sin \frac{\pi}{5} \sin \frac{2\pi}{5} \sin \color{#3D99F6} {\frac{3\pi}{5}} \sin \color{#D61F06}{\frac{4\pi}{5}} \\ = \sin \frac{\pi}{5} \sin \frac{2\pi}{5} \sin \color{#3D99F6} {\frac{2\pi}{5}} \sin \color{#D61F06}{\frac{\pi}{5}}\\ =\sin^2 \frac{\pi}{5} *\sin^2 \frac{2\pi}{5}\\ \color{#3D99F6} {\sin \frac{\pi}{5} =\large \sqrt{\dfrac{5-\sqrt5 }8} }\\ \color{#3D99F6} { \sin \frac{2\pi}{5} = \large \sqrt{\dfrac{5+\sqrt5 }8}} \therefore\ \sin \frac{\pi}{5} \sin \frac{2\pi}{5} \sin \color{#3D99F6} {\frac{3\pi}{5}} \sin \color{#D61F06}{\frac{4\pi}{5}}\\ = \dfrac{5-\sqrt5 }8*\dfrac{5-\sqrt5 }8\\ \dfrac{20}{8^2}= \dfrac{5}{16} = \dfrac A B\\ B-A=11\\\ \ \\

It is basically same as other two solutions. My apology and thanks to Chew-Seong Cheong, for using part of his Latex codes.

Mas Mus
Oct 10, 2015

sin ( π 5 ) sin ( 2 π 5 ) sin ( 3 π 5 ) sin ( 4 π 5 ) = sin ( π 5 ) sin ( 2 π 5 ) sin ( 2 π 5 ) sin ( π 5 ) = [ sin ( π 5 ) sin ( 2 π 5 ) ] 2 = [ 1 2 ( cos 3 π 5 cos π 5 ) ] 2 = 1 4 [ sin 1 8 sin 5 4 ] 2 \sin \left( \frac{\pi}{5} \right) \sin \left( \frac{2\pi}{5} \right) \sin \left( \frac{3\pi}{5} \right) \sin \left( \frac{4\pi}{5} \right) =\sin \left( \frac{\pi}{5} \right) \sin \left( \frac{2\pi}{5} \right) \sin \left( \frac{2\pi}{5} \right) \sin \left( \frac{\pi}{5} \right)\\=\left[\sin \left( \frac{\pi}{5} \right) \sin \left( \frac{2\pi}{5} \right)\right]^{2}=\left[-\frac{1}{2}\left(\cos\frac{3\pi}{5}-\cos\frac{\pi}{5}\right)\right]^{2}=\frac{1}{4}\left[-\sin18^{\circ}-\sin54^{\circ}\right]^{2} .

From this we have sin 1 8 = 1 + 5 4 \sin18^{\circ}=\frac{-1+\sqrt{5}}{4} and sin 5 4 = 1 + 5 4 \sin54^{\circ}=\frac{1+\sqrt{5}}{4}

Then, 1 4 [ sin 1 8 sin 5 4 ] 2 = 1 4 [ 5 2 ] 2 = 5 16 = A B \frac{1}{4}\left[-\sin18^{\circ}-\sin54^{\circ}\right]^{2}=\frac{1}{4}\left[\frac{\sqrt{5}}{2}\right]^{2}=\frac{5}{16}=\frac{A}{B}

Thus, the required answer is B A = 11 B-A=\large{11}

Ben Habeahan
Oct 9, 2015

Use formula ( with induction):

k = 1 n 1 sin ( k π n ) = 2 ( 1 n ) n \boxed{ \large\prod_{k=1}^{n-1} \sin(\frac{k\pi}{n})=2^{(1-n)}n }

k = 1 4 sin ( k π 5 ) = 2 ( 1 5 ) 5 = 5 16 \large\prod_{k=1}^{4} \sin(\frac{k\pi}{5})=2^{(1-5)}5=\frac{5}{16}

16 5 = 11 \implies16-5=\boxed{11}

N O T E : \large{NOTE:}

k = 1 n 1 cos ( k π n ) = 2 ( 1 n ) sin ( n π 2 ) \large\prod_{k=1}^{n-1} \cos(\frac{k\pi}{n})=2^{(1-n)}\sin(\frac{n\pi}{2})

k = 1 n 1 tan ( k π n ) = n csc ( n π 2 ) \large\prod_{k=1}^{n-1} \tan(\frac{k\pi}{n})=n \csc (\frac{n\pi}{2})

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...