sin ( 5 π ) sin ( 5 2 π ) sin ( 5 3 π ) sin ( 5 4 π )
If the value of the expression is equals to B A for coprime positive integers A and B , submit your answer as B − A .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
sin 5 π sin 5 2 π sin 5 3 π sin 5 4 π ⇒ B − A = sin 5 π sin 5 2 π sin 5 2 π sin 5 π = sin 2 5 π sin 2 5 2 π = 4 1 ( 1 − cos 5 2 π ) ( 1 − cos 5 4 π ) = 4 1 ( 1 − cos 5 2 π ) ( 2 3 + cos 5 2 π ) = 4 1 ( 2 3 − 2 1 cos 5 2 π − cos 2 5 2 π ) = 4 1 ( 2 3 − 2 1 cos 5 2 π − 2 1 − 2 1 cos 5 4 π ) = 4 1 ( 1 − 2 1 [ cos 5 2 π + cos 5 4 π ] ) = 4 1 ( 1 − 2 1 [ − 2 1 ] ) = 1 6 5 = 1 1 [ sin 5 k π = sin 5 5 − k π ] [ cos 5 2 k π = 1 − sin 2 5 k π ] [ cos 5 2 π + cos 5 4 π = − 2 1 ]
sin 5 π sin 5 2 π sin 5 3 π sin 5 4 π = sin 5 π sin 5 2 π sin 5 2 π sin 5 π = sin 2 5 π ∗ sin 2 5 2 π sin 5 π = 8 5 − 5 sin 5 2 π = 8 5 + 5 ∴ sin 5 π sin 5 2 π sin 5 3 π sin 5 4 π = 8 5 − 5 ∗ 8 5 − 5 8 2 2 0 = 1 6 5 = B A B − A = 1 1
It is basically same as other two solutions. My apology and thanks to Chew-Seong Cheong, for using part of his Latex codes.
sin ( 5 π ) sin ( 5 2 π ) sin ( 5 3 π ) sin ( 5 4 π ) = sin ( 5 π ) sin ( 5 2 π ) sin ( 5 2 π ) sin ( 5 π ) = [ sin ( 5 π ) sin ( 5 2 π ) ] 2 = [ − 2 1 ( cos 5 3 π − cos 5 π ) ] 2 = 4 1 [ − sin 1 8 ∘ − sin 5 4 ∘ ] 2 .
From this we have sin 1 8 ∘ = 4 − 1 + 5 and sin 5 4 ∘ = 4 1 + 5
Then, 4 1 [ − sin 1 8 ∘ − sin 5 4 ∘ ] 2 = 4 1 [ 2 5 ] 2 = 1 6 5 = B A
Thus, the required answer is B − A = 1 1
Use formula ( with induction):
k = 1 ∏ n − 1 sin ( n k π ) = 2 ( 1 − n ) n
∏ k = 1 4 sin ( 5 k π ) = 2 ( 1 − 5 ) 5 = 1 6 5
⟹ 1 6 − 5 = 1 1
N O T E :
∏ k = 1 n − 1 cos ( n k π ) = 2 ( 1 − n ) sin ( 2 n π )
∏ k = 1 n − 1 tan ( n k π ) = n csc ( 2 n π )
Problem Loading...
Note Loading...
Set Loading...