can be written as , where , and are all positive integers greater than and is a prime number.
Evaluate
Note : is the Harmonic Number.
See Also : Part 2
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Method 1 :
Note that,
\displaystyle \dfrac{1}{n+1} \dbinom{2n}{n} = \dfrac{\Gamma(2n+1)}{\Gamma(n+1) \Gamma(n+2)} \tag{1}
Using Gamma Duplication Formula, we have,
\displaystyle \Gamma \left(\dfrac{2n+1}{2}\right) = \dfrac{2^{-2n} \sqrt{\pi} \ \Gamma(2n+1)}{\Gamma(n+1)} \tag{2}
Using ( 1 ) and ( 2 ) , we have,
n + 1 1 ( n 2 n ) = π 2 2 n Γ ( n + 2 ) Γ ( 2 2 n + 1 )
= π 2 2 n + 1 ⋅ B ( n + 2 1 , 2 3 )
⟹ S = π 2 n = 1 ∑ ∞ H n ⋅ B ( n + 2 1 , 2 3 )
= π 4 ∫ 0 2 π n = 1 ∑ ∞ H n sin 2 n θ cos 2 θ d θ
From the generating function of harmonic number (which can be easily proved by its integral representation), we have,
( 1 − x ) n = 1 ∑ ∞ H n x n = − ln ( 1 − x ) ; ∣ x ∣ < 1
Putting x = sin 2 θ and integrating from 0 to 2 π , we have,
S = − π 8 ∫ 0 2 π ln ( cos θ ) d θ
= 4 ln 2
⟹ A + B + C = 6
Method 2 :
Lemma : n = 0 ∑ ∞ ( n 2 n ) H n x n = 1 − 4 x 2 ln ( 2 1 − 4 x 1 + 1 − 4 x )
Proof :
Note that,
\begin{aligned} \sum_{n=1}^\infty \binom{2n}{n} x^n &= \frac{1}{\sqrt{1-4x}} \ ; \ |x|<\frac{1}{4} \tag{1}\\ H_n &= \int_0^1 \frac{1-t^n}{1-t} \mathrm{d}t \tag{2} \end{aligned}
From ( 1 ) and ( 2 ) ,
n = 1 ∑ ∞ ( n 2 n ) H n x n = n = 1 ∑ ∞ ( n 2 n ) x n ∫ 0 1 1 − t 1 − t n d t = ∫ 0 1 1 − t 1 − 4 x 1 − 1 − 4 x t 1 d t = 1 − 4 x 1 ∫ 0 1 ( 1 − t ) 1 − 4 x t 1 − 4 x t − 1 − 4 x d t = 1 − 4 x 1 [ − lo g ( 1 − t ) + lo g ∣ ∣ ∣ ∣ ∣ 1 − 4 x t + 1 − 4 x 1 − 4 x t − 1 − 4 x ∣ ∣ ∣ ∣ ∣ ] t = 0 t = 1 = 1 − 4 x 2 lo g ( 2 1 − 4 x 1 + 1 − 4 x )
∴ S = ∫ 0 4 1 n = 1 ∑ ∞ ( n 2 n ) H n x n d x = ∫ 0 4 1 1 − 4 x 2 lo g ( 2 1 − 4 x 1 + 1 − 4 x ) d x
= 4 ln 2
⟹ A + B + C = 6