Bino Harmonic Series 1

Calculus Level 5

S = n = 1 [ ( 2 n n ) H n 2 2 n ( n + 1 ) ] \text{S} = \sum_{n=1}^{\infty} \left [\dbinom{2n}{n} \cdot \dfrac{H_{n}}{2^{2n}(n+1)}\right]

S \text{S} can be written as A B ln C \text{A}^{\text{B}} \ln \text{C} , where A \text{A} , B \text{B} and C \text{C} are all positive integers greater than 1 1 and C \text{C} is a prime number.

Evaluate A + B + C \text{A}+\text{B}+\text{C}

Note : H n H_{n} is the n th \text{n}^{\text{th}} Harmonic Number.


See Also : Part 2


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ishan Singh
Feb 3, 2016

Method 1 :

Note that,

\displaystyle \dfrac{1}{n+1} \dbinom{2n}{n} = \dfrac{\Gamma(2n+1)}{\Gamma(n+1) \Gamma(n+2)} \tag{1}

Using Gamma Duplication Formula, we have,

\displaystyle \Gamma \left(\dfrac{2n+1}{2}\right) = \dfrac{2^{-2n} \sqrt{\pi} \ \Gamma(2n+1)}{\Gamma(n+1)} \tag{2}

Using ( 1 ) (1) and ( 2 ) (2) , we have,

1 n + 1 ( 2 n n ) = 2 2 n π Γ ( 2 n + 1 2 ) Γ ( n + 2 ) \displaystyle \dfrac{1}{n+1} \dbinom{2n}{n} = \dfrac{2^{2n}}{\sqrt{\pi}} \dfrac{\Gamma \left(\dfrac{2n+1}{2}\right)}{\Gamma(n+2)}

= 2 2 n + 1 π B ( n + 1 2 , 3 2 ) \displaystyle = \dfrac{2^{2n+1}}{\pi} \cdot \operatorname{B} \left( n + \dfrac{1}{2} , \dfrac{3}{2} \right)

S = 2 π n = 1 H n B ( n + 1 2 , 3 2 ) \displaystyle \implies \text{S} = \dfrac{2}{\pi} \sum_{n=1}^{\infty} H_{n} \cdot \operatorname{B} \left( n + \dfrac{1}{2} , \dfrac{3}{2} \right)

= 4 π 0 π 2 n = 1 H n sin 2 n θ cos 2 θ d θ \displaystyle = \dfrac{4}{\pi} \int_{0}^{\frac{\pi}{2}} \sum_{n=1}^{\infty} H_{n} \sin^{2n} \theta \cos^2 \theta \ \mathrm{d}\theta

From the generating function of harmonic number (which can be easily proved by its integral representation), we have,

( 1 x ) n = 1 H n x n = ln ( 1 x ) ; x < 1 \displaystyle (1-x) \sum_{n=1}^{\infty} H_{n} x^{n} = - \ln(1-x) \ ; \ |x| < 1

Putting x = sin 2 θ x = \sin^2 \theta and integrating from 0 0 to π 2 \frac{\pi}{2} , we have,

S = 8 π 0 π 2 ln ( cos θ ) d θ \displaystyle \text{S} = -\dfrac{8}{\pi} \int_{0}^{\frac{\pi}{2}} \ln (\cos \theta) \ \mathrm{d} \theta

= 4 ln 2 = 4 \ln 2

A + B + C = 6 \implies A + B + C = \boxed{6}

Method 2 :

Lemma : n = 0 ( 2 n n ) H n x n = 2 1 4 x ln ( 1 + 1 4 x 2 1 4 x ) \sum_{n=0}^{\infty} \dbinom{2n}{n} H_{n} x^{n} = \dfrac{2}{\sqrt{1-4x}} \ln\left(\dfrac{1+\sqrt{1-4x}}{2\sqrt{1-4x}}\right)

Proof :

Note that,

\begin{aligned} \sum_{n=1}^\infty \binom{2n}{n} x^n &= \frac{1}{\sqrt{1-4x}} \ ; \ |x|<\frac{1}{4} \tag{1}\\ H_n &= \int_0^1 \frac{1-t^n}{1-t} \mathrm{d}t \tag{2} \end{aligned}

From ( 1 ) (1) and ( 2 ) (2) ,

n = 1 ( 2 n n ) H n x n = n = 1 ( 2 n n ) x n 0 1 1 t n 1 t d t = 0 1 1 1 4 x 1 1 4 x t 1 t d t = 1 1 4 x 0 1 1 4 x t 1 4 x ( 1 t ) 1 4 x t d t = 1 1 4 x [ log ( 1 t ) + log 1 4 x t 1 4 x 1 4 x t + 1 4 x ] t = 0 t = 1 = 2 1 4 x log ( 1 + 1 4 x 2 1 4 x ) \displaystyle \begin{aligned} \sum_{n=1}^\infty \binom{2n}{n} H_n x^n &= \sum_{n=1}^\infty \binom{2n}{n} x^n \int_0^1 \frac{1-t^n}{1-t} \mathrm{d}t \\ &= \int_0^1 \frac{\frac{1}{\sqrt{1-4x}}-\frac{1}{\sqrt{1-4xt}}}{1-t} \mathrm{d}t \\ &= \frac{1}{\sqrt{1-4x}}\int_0^1 \frac{\sqrt{1-4xt}-\sqrt{1-4x}}{(1-t)\sqrt{1-4xt}} \mathrm{d}t \\ &= \frac{1}{\sqrt{1-4x}} \Bigg[ -\log(1-t)+\log \Bigg|\frac{\sqrt{1-4xt}-\sqrt{1-4x}}{\sqrt{1-4xt}+\sqrt{1-4x}} \Bigg|\Bigg]_{t=0}^{t=1} \\ &= \frac{2}{\sqrt{1-4x}}\log \left(\frac{1+\sqrt{1-4x}}{2\sqrt{1-4x}} \right) \end{aligned}

S = 0 1 4 n = 1 ( 2 n n ) H n x n d x = 0 1 4 2 1 4 x log ( 1 + 1 4 x 2 1 4 x ) d x \therefore \displaystyle \text{S} = \int_{0}^{\frac{1}{4}} \sum_{n=1}^\infty \binom{2n}{n} H_{n} x^n \ \mathrm{d}x = \int_{0}^{\frac{1}{4}} \frac{2}{\sqrt{1-4x}}\log \left(\frac{1+\sqrt{1-4x}}{2\sqrt{1-4x}} \right) \ \mathrm{d}x

= 4 ln 2 = 4 \ln 2

A + B + C = 6 \implies A+B+C = \boxed{6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...