Binom

( 2010 0 ) + ( 2010 3 ) + ( 2010 6 ) + + ( 2010 2010 ) = 2 n + 2 3 \binom{2010}{0}+\binom{2010}{3}+\binom{2010}{6}+\dots+\binom{2010}{2010}=\dfrac{2^n+2}{3}

What is the value of n n ?

1004 2012 1006 2011 2013 1007 2010 1005

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 27, 2017

We know that ( 1 + x ) n = k = 0 n ( n k ) x k \displaystyle (1+x)^n = \sum_{k=0}^n {n \choose k}x^k . Let ω \omega be the third root of unit. Then we have 1 + ω + ω 2 = 0 1+\omega+\omega^2=0 and ω 3 = 1 \omega^3 = 1 .

( 1 + 1 ) 2010 = ( 2010 0 ) + ( 2010 1 ) + ( 2010 2 ) + ( 2010 3 ) + + ( 2010 2010 ) ( 1 + ω ) 2010 = ( 2010 0 ) + ( 2010 1 ) ω + ( 2010 2 ) ω 2 + ( 2010 3 ) + + ( 2010 2010 ) ( 1 + ω 2 ) 2010 = ( 2010 0 ) + ( 2010 1 ) ω 2 + ( 2010 2 ) ω + ( 2010 3 ) + + ( 2010 2010 ) \begin{aligned} (1+1)^{2010} & = {2010 \choose 0} + {2010 \choose 1} + {2010 \choose 2} + {2010 \choose 3} + \cdots + {2010 \choose 2010} \\ (1+\omega)^{2010} & = {2010 \choose 0} + {2010 \choose 1}\omega + {2010 \choose 2}\omega^2 + {2010 \choose 3} + \cdots + {2010 \choose 2010} \\ (1+\omega^2)^{2010} & = {2010 \choose 0} + {2010 \choose 1}\omega^2 + {2010 \choose 2}\omega + {2010 \choose 3} + \cdots + {2010 \choose 2010} \end{aligned}

Therefore,

( 1 + 1 ) 2010 + ( 1 + ω ) 2010 + ( 1 + ω 2 ) 2010 = 3 ( ( 2010 0 ) + ( 2010 3 ) + ( 2010 6 ) + + ( 2010 2010 ) ) \begin{aligned} (1+1)^{2010} + (1+\omega)^{2010} + (1+\omega^2)^{2010} & = 3 \left( {2010 \choose 0} + {2010 \choose 3} + {2010 \choose 6} + \cdots + {2010 \choose 2010} \right) \end{aligned}

k = 0 670 ( 2010 3 k ) = ( 1 + 1 ) 2010 + ( 1 + ω ) 2010 + ( 1 + ω 2 ) 2010 3 Since 1 + ω + ω 2 = 0 = 2 2010 + ( ω 2 ) 2010 + ( ω ) 2010 3 = 2 2010 + ω 4020 + ω 2010 3 = 2 2010 + 1 + 1 3 = 2 2010 + 2 3 \begin{aligned} \implies \sum_{k=0}^{670} {2010 \choose 3k} & = \frac {(1+1)^{2010} + (1+\omega)^{2010} + (1+\omega^2)^{2010}}3 & \small \color{#3D99F6} \text{Since } 1+\omega+\omega^2=0 \\ & = \frac {2^{2010} + (-\omega^2)^{2010} + (-\omega)^{2010}}3 \\ & = \frac {2^{2010} + \omega^{4020} + \omega^{2010}}3 \\ & = \frac {2^{2010} + 1 + 1}3 \\ & = \frac {2^{2010} + 2}3 \end{aligned}

n = 2010 \implies n = \boxed{2010}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...