Not Pascal's Identity

Algebra Level 2

C 1 C 0 + 2 C 2 C 1 + 3 C 3 C 2 + + 15 C 15 C 14 \frac {C_1}{C_0} + 2\ \frac {C_2}{C_1} + 3\ \frac {C_3}{C_2} + \ldots + 15\ \frac {C_{15}}{C_{14}}

Let C r C_r denote the binomial coefficient ( 15 r ) { 15 \choose r } . What is the value of the expression above?

100 130 110 120

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Note first that for 0 n 14 0 \le n \le 14 we have that

C n + 1 C n = 15 ! ( 14 n ) ! ( n + 1 ) ! 15 ! ( 15 n ) ! n ! = 15 n n + 1 \dfrac{C_{n+1}}{C_{n}} = \dfrac{\frac{15!}{(14 - n)! * (n + 1)!}}{\frac{15!}{(15 - n)! * n!}} =\dfrac{15 - n}{n + 1} .

So the desired sum is

n = 0 14 ( n + 1 ) ( 15 n ) n + 1 = 15 n = 0 14 ( 1 ) n = 0 14 n = 15 15 14 15 2 = 120 \displaystyle\sum_{n=0}^{14} (n + 1)\dfrac{(15 - n)}{n + 1} = 15*\displaystyle\sum_{n=0}^{14} (1) - \sum_{n=0}^{14} n = 15*15 - \dfrac{14*15}{2} = \boxed{120} .

Simpler last line:

n = 0 14 ( n + 1 ) 15 n n + 1 = n = 0 14 ( 15 n ) = 15 + 14 + 13 + + 2 + 1 = \sum_{n=0}^{14} (n+1) \frac {15-n}{n+1} = \sum_{n=0}^{14} (15-n) = 15 + 14 + 13 + \ldots + 2 + 1 = \ldots

Pi Han Goh - 6 years, 2 months ago
William Chau
Jan 20, 2015

Note that f(k) = (k+1) * 15C(k+1)/15Ck = (k+1)(k!)(15-k)! / (k+1)!(14-k)! = 15-k. So the required sum is 15+14+...+1 = 15(15+1)/2 = 120.

Anna Anant
Jan 24, 2015

C(r)/C(r-1) = (n+1)/r - 1 And T(r) = r * C(r)/C(r-1) = (n+1) - r Thus Sum = n(n+1) - n(n+1)/2 = n(n+1)/2 Putting n = 15, you get 120

E Tyson Ewing Iii
Sep 15, 2015

Since × × is between 1 and 15, inclusive, l simplified the fraction ( 15 x ) / ( 15 ( x 1 ) ) { 15 \choose x} / _{15 \choose (x-1) } which came out to ( 16 x ) / x (16-x)/x . Thus, the problem can be rewritten as i = 1 15 x ( ( 16 x ) / x ) = i = 1 15 ( 16 x ) = ( 15 × 16 ) / 2 = 15 × 8 = 120 \sum_{i =1}^{15} x((16-x)/x) = \sum_{i=1}^{15} (16-x) = (15 \times 16)/2 = 15 \times 8 = 120

Parth Satasiya
Mar 16, 2016

15*14=210=>120

Fahim Saikat
Jul 9, 2017

C x C x 1 = 15 ! x ! ( 15 x ) ! 15 ! ( x 1 ) ! ( 15 x + 1 ) ! = 16 x x \frac{C_{x}}{C_{x-1}}=\frac{\frac{15!}{x!(15-x)!}}{\frac{15!}{(x-1)!(15-x+1)!}}=\frac{16-x}{x}

C 1 C 0 + 2 C 2 C 1 + 3 C 3 C 2 + + 15 C 15 C 14 = x = 1 15 x C x C x 1 = x = 1 15 x 16 x x = x = 1 15 16 x = x = 1 15 16 x = 1 15 x = 15 × 16 15 × 16 2 = 15 × 16 2 = 120 \frac {C_1}{C_0} + 2\ \frac {C_2}{C_1} + 3\ \frac {C_3}{C_2} + \ldots + 15\ \frac {C_{15}}{C_{14}} \\ =\sum_{x=1}^{15}x\frac{C_{x}}{C_{x-1}}=\sum_{x=1}^{15}x\frac{16-x}{x}=\sum_{x=1}^{15}{16-x}=\sum_{x=1}^{15}{16}-\sum_{x=1}^{15}{x}=15\times16-\frac{15\times16}{2}=\frac{15\times16}{2}=\boxed{120}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...