Something my AP Calculus class does not teach: Advanced Binomial?

Calculus Level 5

Let a k a_k denote the coefficient of x k { x }^{ k } in the expansion of ( 1 + 2 x ) n { \left( 1+2x \right) }^{ n } , where n n is a positive integer. It is given that the expression

k = 0 n ( 3 k + 1 ) a k = ( p n + q ) r n \large \sum _{ k=0 }^{ n }{ \left( 3k+1 \right) { a }_{ k } } = \left( pn+q \right) { r }^{ n }

where p p , q q , and r r are positive integers. Find p + q + r p+q+r .

Hint: You have to use some calculus.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Nov 20, 2017

Since a k = ( n k ) 2 k a_k = \binom{n}{k}2^k for 0 k n 0 \le k \le n we have k = 0 n ( 3 k + 1 ) a k = 3 k = 1 n k ( n k ) 2 k + ( 2 + 1 ) n = 3 n k = 1 n ( n 1 k 1 ) 2 k + 3 n = 3 n k = 0 n 1 ( n 1 k ) 2 k + 1 + 3 n = 6 n ( 2 + 1 ) n 1 + 3 n = ( 2 n + 1 ) 3 n \begin{aligned} \sum_{k=0}^n (3k+1)a_k & = \; 3\sum_{k=1}^n k\binom{n}{k} 2^k + (2 + 1)^n \; = \; 3n\sum_{k=1}^n \binom{n-1}{k-1}2^k + 3^n \\ & = \; 3n\sum_{k=0}^{n-1}\binom{n-1}{k}2^{k+1} + 3^n \; = \; 6n(2 + 1)^{n-1} + 3^n \; = \; (2n+1)3^n \end{aligned} making the answer 2 + 1 + 3 = 6 2+1+3=\boxed{6} .

Same method here!

Kevin Tong - 3 years, 6 months ago
Raymond Chan
Nov 19, 2017

Starting with ( 1 + 2 x ) n = k = 0 n a k x k { \left( 1+2x \right) }^{ n }=\sum _{ k=0 }^{ n }{ { a }_{ k }{ x }^{ k } } Putting x = 1 x=1 , we have: k = 0 n a k = 3 n \sum _{ k=0 }^{ n }{ { a }_{ k } } ={ 3 }^{ n }

Differentiating both sides of ( 1 + 2 x ) n = k = 0 n a k x k { \left( 1+2x \right) }^{ n }=\sum _{ k=0 }^{ n }{ { a }_{ k }{ x }^{ k } } w.r.t. x, we have: 2 n ( 1 + 2 x ) n 1 = k = 1 n k a k x k 1 2n{ \left( 1+2x \right) }^{ n-1 }=\sum _{ k=1 }^{ n }{ k{ a }_{ k }{ x }^{ k-1 } }

Note that the term with k = 0 k=0 will vanish after differentiation.

Putting x = 1 x=1 again, we have: k = 0 n k a k = 2 n 3 n 1 \sum _{ k=0 }^{ n }{ k{ a }_{ k } } =2n{ 3 }^{ n-1 }

Notice that k = 0 n ( 3 k + 1 ) a k = 3 k = 0 n k a k + k = 0 n a k = 3 k = 1 n k a k + k = 0 n a k \sum _{ k=0 }^{ n }{ \left( 3k+1 \right) { a }_{ k } } =3\sum _{ k=0 }^{ n }{ k{ a }_{ k } } +\sum _{ k=0 }^{ n }{ { a }_{ k } } =3\sum _{ k=1 }^{ n }{ k{ a }_{ k } } +\sum _{ k=0 }^{ n }{ { a }_{ k } }

Therefore, k = 0 n ( 3 k + 1 ) a k = 3 ( 2 n 3 n 1 ) + 3 n = 2 n 3 n + 3 n = ( 2 n + 1 ) 3 n \sum _{ k=0 }^{ n }{ \left( 3k+1 \right) { a }_{ k } } =3\left( 2n{ 3 }^{ n-1 } \right) +{ 3 }^{ n }=2n{ 3 }^{ n }+{ 3 }^{ n }=\left( 2n+1 \right) { 3 }^{ n }

So, p = 2 p=2 , q = 1 q=1 , r = 3 r=3 , and p + q + r = 2 + 1 + 3 = 6 p+q+r=2+1+3=\boxed 6

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...