Binomial Coefficients and Fractions

Algebra Level 5

1 + 1 2 ( 5 3 ) + 3 4 ( 6 3 ) + ( 7 3 ) + 5 4 ( 8 3 ) + 3 2 ( 9 3 ) + 7 4 ( 10 3 ) = ( a b ) 1 + \frac{1}{2}{5\choose3}+\frac{3}{4}{6\choose3}+{7\choose3}+\frac{5}{4}{8\choose3}+\frac{3}{2}{9\choose3}+\frac{7}{4}{10\choose3} = {a\choose b}

It is given that 2 b a 2b \le a and a a is as small an integer as possible. Determine the value of a + b a+b .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kartik Sharma
Nov 14, 2015

The sum can be written as : n = 1 7 n 4 ( n + 3 3 ) = 1 4 ! n = 1 7 n ( n + 1 ) ( n + 2 ) ( n + 3 ) \displaystyle \sum_{n=1}^7{\dfrac{n}{4} \dbinom{n+3}{3}} = \dfrac{1}{4!}\sum_{n=1}^7{n(n+1)(n+2)(n+3)}

= 1 5 ! n = 1 7 n ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) ( n 1 ) ( n ) ( n + 1 ) ( n + 2 ) ( n + 3 ) \displaystyle= \dfrac{1}{5!}\sum_{n=1}^7{n(n+1)(n+2)(n+3)(n+4) - (n-1)(n)(n+1)(n+2)(n+3)}

which telescopes to 1 5 ! 7 × 8 × 9 × 10 × 11 = ( 11 5 ) \displaystyle \text{which telescopes to} \dfrac{1}{5!}7\times 8 \times 9\times 10 \times 11 = \dbinom{11}{5}

Cool solution but i believe it will come in combinatorics section

Department 8 - 5 years, 7 months ago

Similar solution with @Kartik Sharma 's

S = 1 + 1 2 ( 5 3 ) + 3 4 ( 6 3 ) + ( 7 3 ) + 5 4 ( 8 3 ) + 3 2 ( 9 3 ) + 7 4 ( 10 3 ) = 1 4 ( 4 3 ) + 2 4 ( 5 3 ) + 3 4 ( 6 3 ) + 4 4 ( 7 3 ) + 5 4 ( 8 3 ) + 6 4 ( 9 3 ) + 7 4 ( 10 3 ) \begin{aligned} S & = 1 + \frac 12 \binom 53 + \frac 34 \binom 63 + \binom 73 + \frac 54 \binom 83 + \frac 32 \binom 93 + \frac 74 \binom {10}3 \\ & = \frac 14 \binom 43 + \frac 24 \binom 53 + \frac 34 \binom 63 + \frac 44 \binom 73 + \frac 54 \binom 83 + \frac 64 \binom 93 + \frac 74 \binom {10}3 \end{aligned}

= k = 1 7 k 4 ( k + 3 3 ) = k = 1 7 k ( k + 1 ) ( k + 2 ) ( k + 3 ) 4 3 ! = k = 1 7 ( k + 3 4 ) By Pascal formula: ( n k ) = ( n 1 k 1 ) + ( n 1 k ) = k = 1 7 ( ( k + 4 5 ) ( k + 3 5 ) ) = k = 1 7 ( k + 4 5 ) k = 1 6 ( k + 4 5 ) = ( 11 5 ) \begin{aligned} \ \ \ & = \sum_{k=1}^7 \frac k4 \binom {k+3}3 \\ & = \sum_{k=1}^7 \frac {k(k+1)(k+2)(k+3)}{4\cdot 3!} \\ & = \sum_{k=1}^7 \binom {k+3}4 & \small \color{#3D99F6} \text{By Pascal formula: } \binom nk = \binom {n-1}{k-1} + \binom {n-1}k \\ & = \sum_{k=1}^7 \left(\binom {k+4}5 - \binom {k+3}5 \right) \\ & = \sum_{k=1}^7 \binom {k+4}5 - \sum_{k=1}^6 \binom {k+4}5 \\ & = \binom {11}5 \end{aligned}

Therefore, a + b = 11 + 5 = 16 a+b = 11 + 5 = \boxed{16} .

Lau Mark
Dec 30, 2017

Extreme 'Stupid' method, brute force out the L.H.S yields 462 = 2 × 3 × 7 × 11 462= 2 \times 3 \times 7 \times 11 , so a a must bigger than or equal to 11 11 . Trial and error yields C 5 11 C^{11}_5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...