Binomial Distribution at Infinity

Consider a binomial distribution of X B ( n , p ) X\sim B(n,p) .

It can be easily shown that P ( X = k ) = ( n k ) p k ( 1 p ) n k P(X=k)={n\choose k}p^k{(1-p)}^{n-k} for k = 0 , 1 , 2 , 3 , , n k=0,1,2,3,\ldots,n .

Now, let's take the limit of the above using n n \to \infty . Instead of having an infinitesimal p p , let's assume that it is given that n p np , the mean of the probability distribution function, is some finite value m m .

Find P ( X = k ) P(X=k) in terms of m m and k k for this new distribution, where k = 0 , 1 , 2 , 3 , k=0,1,2,3,\ldots , without looking anything up or reciting any formulas from memory.

0 0 e m k ! m \frac{e^{-m}}{k!\ m} e k m ! k \frac{e^{-k}}{m!\ k} m k e m k ! \frac{m^ke^{-m}}{k!} m k ! ln m \frac{m}{k! \ln{m}} ln k k ! ln m \frac{\ln{k}}{k! \ln{m}} e k ln m m ! k \frac{e^{-k}\ln{m}}{m!\ k} Limit does not exist

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nick Turtle
May 2, 2018

You probably recognize that the new probability distribution function is the Poisson distribution.

Without using the formula, consider the binomial distribution: P ( X = k ) = ( n k ) p k ( 1 p ) n k P(X=k)={n\choose k}p^k{\left(1-p\right)}^{n-k}

= n ! k ! ( n k ) ! p k ( 1 p ) n k =\frac{n!}{k!(n-k)!}p^k{\left(1-p\right)}^{n-k}

Substitute m = n p m=np , or p = m n p=\frac{m}{n} : = n ! k ! ( n k ) ! ( m n ) k ( 1 m n ) n k =\frac{n!}{k!(n-k)!}{\left(\frac{m}{n}\right)}^k{\left(1-\frac{m}{n}\right)}^{n-k}

= n ! k ! ( n k ) ! m k n k ( 1 m n ) n ( 1 m n ) k =\frac{n!}{k!(n-k)!}\frac{m^k}{n^k}{\left(1-\frac{m}{n}\right)}^n{\left(1-\frac{m}{n}\right)}^{-k}

Slightly rearrange = n ! n k ( n k ) ! ( 1 m n ) k m k k ! ( 1 m n ) n =\frac{n!}{n^k(n-k)!}{\left(1-\frac{m}{n}\right)}^{-k}\frac{m^k}{k!}{\left(1-\frac{m}{n}\right)}^n

Note that lim n n ! n k ( n k ) ! = 1 \lim_{n\to\infty}\frac{n!}{n^k(n-k)!}=1 and lim n ( 1 m n ) k = 1 \lim_{n\to\infty}{\left(1-\frac{m}{n}\right)}^{-k}=1 and lim n ( 1 m n ) n = e m \lim_{n\to\infty}{\left(1-\frac{m}{n}\right)}^n=e^{-m}

Thus, we have the final result of = m k e m k ! =\frac{m^k e^{-m}}{k!}

which is equal to the formula for the Poisson distribution.

Could you elaborate on how you calculated the first limit (the one with all the factorials)?

Piotr Trochim - 1 year, 11 months ago

Log in to reply

=n(n-1)(n-2)...(n-k+1)(n-k)!/n^k (n-k)! =n(n-1)(n-2)...(n-k+1)/n^k =(n/n) ((n-1)/n) ((n-2)/n) ...(n-k+1)/n =1

Rajesh basak - 1 year, 9 months ago

Can you elaborate on calculating the third limit

Chaithanya Laxminarayan - 1 year, 10 months ago

Log in to reply

lim(1-m/n)^n = x

log(x) = lim[ n*log(1-m/n) ] = (using L'Hospital) lim[ mn/(m-n) ] = -m

log(x) = -m

x = e^-m

Matt Zhang - 10 months, 4 weeks ago

Log in to reply

Could you elaborate on the second step? How to apply the L'Hospital rule? Thx!

KE WEI - 1 month, 3 weeks ago

could you explain why we substitute p=m/n?

Ethel Chew - 7 months, 1 week ago

Log in to reply

because the question asks us to find P(X=k) in terms of m and k

He Lin Chooi - 5 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...