Binohow?

Algebra Level 4

r = 0 n r + 1 ( n r ) = r = 0 n n 2 3 n + 5 2 ( n r ) \large \displaystyle \sum_{r=0}^n \frac{r + 1}{{n \choose r}} = \displaystyle \sum_{r=0}^n \frac{n^2 -3n +5 }{2{n \choose r}}

If n 1 n_{1} and n 2 n_{2} are the two values of n n which satisfy the given equation above, find the value of n 1 2 + n 2 2 n_{1}^2 + n_{2}^2 .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Abhishek Sharma
Apr 21, 2015

Consider r = 0 n r n C r \large \sum _{ r=0 }^{ n }{ \frac { r }{ { ^{ n }{ C } }_{ r } } } .

Using the result r = 0 n f ( r ) = r = 0 n f ( n r ) \sum _{ r=0 }^{ n }{ f(r) } =\sum _{ r=0 }^{ n }{ f(n-r) } we get, r = 0 n r n C r = r = 0 n n r n C n r \sum _{ r=0 }^{ n }{ \frac { r }{ { ^{ n }{ C } }_{ r } } } =\sum _{ r=0 }^{ n }{ \frac { n-r }{ { ^{ n }{ C } }_{ n-r } } } Also we have n C n r = n C r \large ^{ n }{ C } _{ n-r }=^{ n }{ C } _{ r } . r = 0 n r n C r = r = 0 n n r n C r \sum _{ r=0 }^{ n }{ \frac { r }{ { ^{ n }{ C } }_{ r } } } =\sum _{ r=0 }^{ n }{ \frac { n-r }{ { ^{ n }{ C } }_{ r } } }

r = 0 n r n C r = r = 0 n n n C r r = 0 n r n C r \sum _{ r=0 }^{ n }{ \frac { r }{ { ^{ n }{ C } }_{ r } } } =\sum _{ r=0 }^{ n }{ \frac { n }{ { ^{ n }{ C } }_{ r } } } -\sum _{ r=0 }^{ n }{ \frac { r }{ { ^{ n }{ C } }_{ r } } } r = 0 n r n C r = 1 2 r = 0 n n n C r \sum _{ r=0 }^{ n }{ \frac { r }{ { ^{ n }{ C } }_{ r } } } =\frac { 1 }{ 2 } \sum _{ r=0 }^{ n }{ \frac { n }{ { ^{ n }{ C } }_{ r } } } r = 0 n r n C r = n 2 r = 0 n 1 n C r \sum _{ r=0 }^{ n }{ \frac { r }{ { ^{ n }{ C } }_{ r } } } =\frac { n }{ 2 } \sum _{ r=0 }^{ n }{ \frac { 1 }{ { ^{ n }{ C } }_{ r } } } r = 0 n r n C r + r = 0 n 1 n C r = n 2 r = 0 n 1 n C r + r = 0 n 1 n C r \sum _{ r=0 }^{ n }{ \frac { r }{ { ^{ n }{ C } }_{ r } } } +\sum _{ r=0 }^{ n }{ \frac { 1 }{ { ^{ n }{ C } }_{ r } } } =\frac { n }{ 2 } \sum _{ r=0 }^{ n }{ \frac { 1 }{ { ^{ n }{ C } }_{ r } } } +\sum _{ r=0 }^{ n }{ \frac { 1 }{ { ^{ n }{ C } }_{ r } } } r = 0 n r + 1 n C r = n + 2 2 r = 0 n 1 n C r \sum _{ r=0 }^{ n }{ \frac { r+1 }{ { ^{ n }{ C } }_{ r } } } =\frac { n+2 }{ 2 } \sum _{ r=0 }^{ n }{ \frac { 1 }{ { ^{ n }{ C } }_{ r } } } r = 0 n r + 1 n C r = n + 2 2 r = 0 n 1 n C r = n 2 3 n + 5 2 r = 0 n 1 n C r \sum _{ r=0 }^{ n }{ \frac { r+1 }{ { ^{ n }{ C } }_{ r } } } =\frac { n+2 }{ 2 } \sum _{ r=0 }^{ n }{ \frac { 1 }{ { ^{ n }{ C } }_{ r } } } =\frac { { n }^{ 2 }-3n+5 }{ 2 } \sum _{ r=0 }^{ n }{ \frac { 1 }{ { ^{ n }{ C } }_{ r } } } n + 2 2 = n 2 3 n + 5 2 \frac { n+2 }{ 2 } =\frac { { n }^{ 2 }-3n+5 }{ 2 } n = 1 n=1 n = 3 n=3 10 \boxed{10}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...