Binomial expansion for a tower of powers or maybe not

Find the last two digits of 3578 9 99 100 1000 1000 {{{35789^{99}}^{100}}^{1000}}^{1000}


The answer is 89.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

3578 9 9 9 10 0 100 0 1000 8 9 9 9 10 0 100 0 1000 (mod 100) Since gcd ( 89 , 100 ) = 1 , Euler’s theorem applies. 8 9 9 9 10 0 100 0 1000 m o d λ ( 100 ) (mod 100) Carmichael’s lambda function λ ( 100 ) = 20 8 9 9 9 10 0 100 0 1000 m o d 20 (mod 100) 8 9 ( 100 1 ) 10 0 100 0 1000 m o d 20 (mod 100) 8 9 1 (mod 100) 89 (mod 100) \begin{aligned} 35789^{99^{100^{1000^{1000}}}} & \equiv 89^{99^{100^{1000^{1000}}}} \text{ (mod 100)} & \small \blue{\text{Since }\gcd(89, 100)=1 \text{, Euler's theorem applies.}} \\ & \equiv 89^{99^{100^{1000^{1000}}}\bmod \lambda (100)} \text{ (mod 100)} & \small \blue{\text{Carmichael's lambda function }\lambda(100) = 20} \\ & \equiv 89^{99^{100^{1000^{1000}}}\bmod 20} \text{ (mod 100)} \\ & \equiv 89^{(100-1)^{100^{1000^{1000}}}\bmod 20} \text{ (mod 100)} \\ & \equiv 89^1 \text{ (mod 100)} \\ & \equiv \boxed {89} \text{ (mod 100)} \end{aligned}


References:

ChengYiin Ong
Jun 8, 2020

3578 9 99 100 1000 1000 3578 9 ( 100 1 ) 1 0 k 3578 9 a ( 10 0 m ) + 1 [ ( ( 35790 1 ) 10 0 m ) a ] ( 35789 ) 35789 89 ( m o d 100 ) {{{35789^{99}}^{100}}^{1000}}^{1000} \equiv {35789^{(100-1)}}^{10^k} \equiv 35789^{a(100^m)+1} \equiv [((35790-1)^{100^m})^a](35789)\equiv 35789 \equiv 89 \ (\mod 100) where the term ( ( 35790 1 ) 10 0 m ) a ((35790-1)^{100^m})^a will be 1 ( m o d 100 ) 1(\mod 100) after the expansion.

Mod 100 , 3578 9 x 100, 35789^x is congruent to ( 11 ) x (-11)^x . If the unit's place digit of the power of 11 11 be n n , then the number formed by the last two digits of the number is 10 n + 1 : 1 1 10 a + n = 100 b + 10 n + 1 10n+1 : 11^{10a+n}=100b+10n+1 where 0 a , b 9 0\leq a, b\leq 9 are positive integers. The last digit of 9 9 2 m 99^{2m} is 1 1 , where m m is a positive integer. So the number formed by the last two digits of the given expression is 11 11 , and hence the required answer is 100 11 = 89 100-11=\boxed {89} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...