Binomial Newton

Given f ( x ) f(x) denotes the number of consecutive zeroes from the right. As an example, f ( 20100 ) = 2 , f ( 1000 ) = 3 , f ( 2018 ) = 0 f(20100) = 2, f(1000)=3, f(2018)=0 . Determine the value of f ( j = 0 n ( ( n j ) ( i = 0 j ( j i ) 998 i ) ) ) n \frac {\displaystyle f\left( \sum _{ j=0 }^{ n }{ \left( \left( \begin{matrix} n \\ j \end{matrix} \right) \left( \sum _{ i=0 }^{ j }{ \left( \begin{matrix} j \\ i \end{matrix} \right) } { 998 }^{ i } \right) \right) } \right) }{ n }


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Note that, ( x + 1 ) n = i = 0 n ( n i ) x i \displaystyle { (x+1) }^{ n }=\sum _{ i=0 }^{ n }{ \left( \begin{matrix} n \\ i \end{matrix} \right) } { x }^{ i } .

i = 0 j ( j i ) 998 i = ( 998 + 1 ) j i = 0 j ( j i ) 998 i = 999 j j = 0 n ( ( n j ) ( i = 0 j ( j i ) 998 i ) ) = j = 0 n ( n j ) 99 9 i j = 0 n ( ( n j ) ( i = 0 j ( j i ) 998 i ) ) = ( 999 + 1 ) n j = 0 n ( ( n j ) ( i = 0 j ( j i ) 998 i ) ) = 1000 n j = 0 n ( ( n j ) ( i = 0 j ( j i ) 998 i ) ) = 10 3 n f ( j = 0 n ( ( n j ) ( i = 0 j ( j i ) 998 i ) ) ) = 3 n \displaystyle \sum _{ i=0 }^{ j }{ \left( \begin{matrix} j \\ i \end{matrix} \right) } { 998 }^{ i }={ (998+1) }^{ j }\\ \displaystyle \sum _{ i=0 }^{ j }{ \left( \begin{matrix} j \\ i \end{matrix} \right) } { 998 }^{ i }={ 999 }^{ j }\\ \displaystyle \sum _{ j=0 }^{ n }{ \left( \left( \begin{matrix} n \\ j \end{matrix} \right) \left( \sum _{ i=0 }^{ j }{ \left( \begin{matrix} j \\ i \end{matrix} \right) } { 998 }^{ i } \right) \right) } = \displaystyle \sum _{ j=0 }^{ n }{ \left( \begin{matrix} n \\ j \end{matrix} \right) { 9 }99^{ i } } \\ \displaystyle \sum _{ j=0 }^{ n }{ \left( \left( \begin{matrix} n \\ j \end{matrix} \right) \left( \sum _{ i=0 }^{ j }{ \left( \begin{matrix} j \\ i \end{matrix} \right) } { 998 }^{ i } \right) \right) } ={ (999+1) }^{ n }\\ \displaystyle \sum _{ j=0 }^{ n }{ \left( \left( \begin{matrix} n \\ j \end{matrix} \right) \left( \sum _{ i=0 }^{ j }{ \left( \begin{matrix} j \\ i \end{matrix} \right) } { 998 }^{ i } \right) \right) } ={ 1000 }^{ n }\\ \displaystyle \sum _{ j=0 }^{ n }{ \left( \left( \begin{matrix} n \\ j \end{matrix} \right) \left( \sum _{ i=0 }^{ j }{ \left( \begin{matrix} j \\ i \end{matrix} \right) } { 998 }^{ i } \right) \right) } ={ 10 }^{ 3n }\\ \displaystyle f\left( \sum _{ j=0 }^{ n }{ \left( \left( \begin{matrix} n \\ j \end{matrix} \right) \left( \sum _{ i=0 }^{ j }{ \left( \begin{matrix} j \\ i \end{matrix} \right) } { 998 }^{ i } \right) \right) } \right) =3n

So, we get

f ( j = 0 n ( ( n j ) ( i = 0 j ( j i ) 998 i ) ) ) n = 3 n n f ( j = 0 n ( ( n j ) ( i = 0 j ( j i ) 998 i ) ) ) n = 3 \frac { \displaystyle f\left( \sum _{ j=0 }^{ n }{ \left( \left( \begin{matrix} n \\ j \end{matrix} \right) \left( \sum _{ i=0 }^{ j }{ \left( \begin{matrix} j \\ i \end{matrix} \right) } { 998 }^{ i } \right) \right) } \right) }{ n } =\frac { 3n }{ n } \\ \therefore \frac { \displaystyle f\left( \sum _{ j=0 }^{ n }{ \left( \left( \begin{matrix} n \\ j \end{matrix} \right) \left( \sum _{ i=0 }^{ j }{ \left( \begin{matrix} j \\ i \end{matrix} \right) } { 998 }^{ i } \right) \right) } \right) }{ n } =3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...