Binomial Sum

Algebra Level 3

3 2 ( 20 3 ) + 6 2 ( 20 6 ) + 9 2 ( 20 9 ) + + 1 8 2 ( 20 18 ) = k ( 2 18 1 ) 3^2 \binom{20}{3}+6^2 \binom{20}{6}+9^2 \binom{20}{9}+ \cdots +18^2 \binom{20}{18}=k(2^{18}-1)

Here, k k is a positive integer. Find k k .

Note : Please refrain from using Wolfram Alpha or similar software to solve this problem.


The answer is 140.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Longish solution, can't seem to find a better one.

( 1 + x ) 20 = 1 + ( 20 1 ) x + ( 20 2 ) x 2 + . . . + ( 20 19 ) x 19 + x 20 (1+x)^{20} = 1 + {20 \choose 1}x + {20 \choose 2}x^2 + ... + {20 \choose 19}x^{19} + x^{20}

( 1 + ω x ) 20 = 1 + ( 20 1 ) ω x + ( 20 2 ) ω 2 x 2 + . . . + ( 20 19 ) ( ω 19 ) x 19 + ω 20 x 20 (1+\omega x)^{20} = 1 + {20 \choose 1}\omega x + {20 \choose 2}\omega ^2x^2 + ... + {20 \choose 19}(\omega^{19}) x^{19} + \omega^{20} x^{20}

( 1 + ω 2 x ) 20 = 1 + ( 20 1 ) ω 2 x + ( 20 2 ) ( ω 2 ) 2 x 2 + . . . + ( 20 19 ) ( ω 2 ) 19 x 19 + ( ω 2 ) 20 x 20 (1+\omega^2x)^{20} = 1 + {20 \choose 1}\omega^2x + {20 \choose 2}(\omega^2)^2 x^2 + ... + {20 \choose 19}(\omega^2)^{19}x^{19} + (\omega^2)^{20}x^{20}

Where ω , ω 2 \omega , \omega^2 are the complex cube roots of unity.Adding all three we get,

( 1 + x ) 20 + ( 1 + ω x ) 20 + ( 1 + ω 2 x ) 20 = 3 ( 20 3 ) x 3 + 3 ( 20 6 ) x 6 + . . . + 3 ( 20 18 ) x 18 (1+x)^{20} + (1+\omega x)^{20} + (1+\omega^2x)^{20} = 3{20 \choose 3}x^3 + 3{20 \choose 6}x^6 + ... + 3{20 \choose 18}x^{18}

Since 1 n + ω n + ( ω 2 ) n = 0 1^n + \omega^n + (\omega^2)^n = 0 if 3 ∤ n 3 \not | n and 1 n + ω n + ( ω 2 ) n = 3 1^n + \omega^n + (\omega^2)^n = 3 if 3 n 3 | n

Differentiating w.r.t. x x

20 ( ( 1 + x ) 19 + ω ( 1 + ω x ) 19 + ω 2 ( 1 + ω 2 x ) 19 ) = 3 ( 3 ( 20 3 ) x 2 + 6 ( 20 6 ) x 5 + . . . + 18 ( 20 18 ) x 17 ) 20((1+x)^{19} + \omega (1+\omega x)^{19} + \omega^2(1+\omega^2x)^{19}) = 3( 3{20 \choose 3}x^2 + 6{20 \choose 6}x^5 + ... + 18{20 \choose 18}x^{17})

Again Differentiating w.r.t. x x .

20 19 ( ( 1 + x ) 18 + ω 2 ( 1 + ω x ) 18 + ω ( 1 + ω 2 x ) 18 ) = 3 ( 3 2 ( 20 3 ) x + 6 5 ( 20 6 ) x 4 + . . . + 18 17 ( 20 18 ) x 16 ) 20*19((1+x)^{18} + \omega^2 (1+\omega x)^{18} + \omega(1+\omega^2x)^{18}) = 3( 3*2{20 \choose 3}x + 6*5{20 \choose 6}x^4 + ... + 18*17{20 \choose 18}x^{16})

Adding both the above equations and putting x = 1 x = 1 , we have,

20 ( ( 2 ) 19 + ω ( 1 + ω ) 19 + ω 2 ( 1 + ω 2 ) 19 ) + 20 19 ( ( 2 ) 18 + ω 2 ( 1 + ω ) 18 + ω ( 1 + ω 2 ) 18 ) = 3 ( 3 ( 20 3 ) + 6 ( 20 6 ) + . . . + 18 ( 20 18 ) + 3 2 ( 20 3 ) + 6 5 ( 20 6 ) + . . . + 18 17 ( 20 18 ) ) 20((2)^{19} + \omega (1+\omega)^{19} + \omega^2(1+\omega^2)^{19}) + 20*19((2)^{18} + \omega^2 (1+\omega )^{18} + \omega(1+\omega^2)^{18}) = 3( 3{20 \choose 3} + 6{20 \choose 6} + ... + 18{20 \choose 18} + 3*2{20 \choose 3} + 6*5{20 \choose 6} + ... + 18*17{20 \choose 18} )

Since 1 + ω 2 = ω 1 + \omega^2 = -\omega and 1 + ω = ω 2 1 + \omega = -\omega^2

20 ( ( 2 ) 19 + ω ( ω 2 ) 19 + ω 2 ( ω ) 19 ) + 20 19 ( ( 2 ) 18 + ω 2 ( ω 2 ) 18 + ω ( ω ) 18 ) = 3 ( 3 2 ( 20 3 ) + 6 2 ( 20 6 ) + . . . + 1 8 2 ( 20 18 ) ) \Rightarrow 20((2)^{19} + \omega (-\omega^2)^{19} + \omega^2(-\omega)^{19}) + 20*19((2)^{18} + \omega^2 (-\omega^2)^{18} + \omega(-\omega)^{18}) = 3( 3^2{20 \choose 3} + 6^2{20 \choose 6} + ... + 18^2{20 \choose 18} )

Since ( ω ) 6 n = ( ω ) 6 n = 1 (-\omega)^{6n} = (-\omega)^{6n} = 1 , we have

20 ( ( 2 ) 19 + ω ( ω 2 ) + ω 2 ( ω ) ) + 20 19 ( ( 2 ) 18 + ω 2 + ω ) = 3 ( 3 2 ( 20 3 ) + 6 2 ( 20 6 ) + . . . + 1 8 2 ( 20 18 ) ) \Rightarrow 20((2)^{19} + \omega (-\omega^2) + \omega^2(-\omega)) + 20*19((2)^{18} + \omega^2 + \omega) =3( 3^2{20 \choose 3} + 6^2{20 \choose 6} + ... + 18^2{20 \choose 18} )

And ω + ω 2 = 1 \omega + \omega^2 = -1

20 ( ( 2 ) 19 + ( 1 ) + ( 1 ) ) + 20 19 ( ( 2 ) 18 + ( 1 ) ) = 3 ( 3 2 ( 20 3 ) + 6 2 ( 20 6 ) + . . . + 1 8 2 ( 20 18 ) ) \Rightarrow 20((2)^{19} + (-1) + (-1)) + 20*19((2)^{18} +(-1)) =3( 3^2{20 \choose 3} + 6^2{20 \choose 6} + ... + 18^2{20 \choose 18} )

20 ( ( 2 ) 19 2 ) + 20 19 ( ( 2 ) 18 1 ) ) = 3 ( 3 2 ( 20 3 ) + 6 2 ( 20 6 ) + . . . + 1 8 2 ( 20 18 ) ) \Rightarrow 20((2)^{19} - 2) + 20*19((2)^{18} -1)) =3( 3^2{20 \choose 3} + 6^2{20 \choose 6} + ... + 18^2{20 \choose 18} )

40 ( ( 2 ) 18 1 ) + 380 ( ( 2 ) 18 1 ) = 3 ( 3 2 ( 20 3 ) + 6 2 ( 20 6 ) + . . . + 1 8 2 ( 20 18 ) ) \Rightarrow 40((2)^{18} -1) + 380((2)^{18} - 1) =3( 3^2{20 \choose 3} + 6^2{20 \choose 6} + ... + 18^2{20 \choose 18} )

420 ( ( 2 ) 18 1 ) = 3 ( 3 2 ( 20 3 ) + 6 2 ( 20 6 ) + . . . + 1 8 2 ( 20 18 ) ) \Rightarrow 420((2)^{18} -1) =3( 3^2{20 \choose 3} + 6^2{20 \choose 6} + ... + 18^2{20 \choose 18} )

140 ( ( 2 ) 18 1 ) = 3 2 ( 20 3 ) + 6 2 ( 20 6 ) + . . . + 1 8 2 ( 20 18 ) \Rightarrow 140((2)^{18} -1) = 3^2{20 \choose 3} + 6^2{20 \choose 6} + ... + 18^2{20 \choose 18} .

Therefore k = 140 k = \boxed{140}

Yes.. even I don't see a shorter solution..

Pratik Shastri - 6 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...