Binomial Summations #4 #Challenge

Geometry Level 5

If a a , b b and c c are the sides opposite to angles A ^ \widehat A , B ^ \widehat B and C ^ \widehat C respectively of a triangle A B C ABC . Find the value of

r = 0 n [ ( n r ) a r b n r cos ( r B ^ ( n r ) A ^ ) ] \large \sum_{r=0}^{n} \left[\binom nr a^rb^{n-r}\cos\left(r\widehat B - (n-r)\widehat A\right)\right]

Here, take c = 1.194 c = 1.194 and n = 50 n=50 . Also A B C ^ \widehat {ABC} represents A B C \angle ABC


The answer is 7082.9852869731956396746406789188.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let S = r = 0 n [ ( n r ) a r b n r cos ( r B ^ ( n r ) A ^ ) ] R = r = 0 n [ ( n r ) a r b n r e i r B ^ e i ( n r ) A ^ ] \large\begin{aligned}S &= \sum_{r=0}^{n} \left[\binom nr a^rb^{n-r}\cos\left(r\widehat B - (n-r)\widehat A\right)\right]\\R&=\sum_{r=0}^{n} \left[\binom nr a^rb^{n-r}e^{ir\widehat B}e^{-i(n-r )\widehat A}\right]\end{aligned}

So, equating real and imaginary parts, S = R = r = 0 n [ ( n r ) a r b n r e i r B ^ e i ( n r ) A ^ ] = [ a ( cos B ^ + i sin B ^ ) + b ( cos A ^ i sin A ^ ) ] n \large\begin{aligned}S &= \Re R\\&=\Re\sum_{r=0}^{n} \left[\binom nr a^rb^{n-r}e^{ir\widehat B}e^{-i(n-r)\widehat A}\right]\\&=\Re\left[a(\cos \widehat B+i\sin \widehat B)+b(\cos \widehat A-i\sin \widehat A)\right]^{\!n}\end{aligned} Now, because a sin B ^ = b sin A ^ a\sin \widehat B = b\sin \widehat A and also Projection Rule says c = a cos B ^ + b cos A ^ c = a\cos \widehat B + b\cos \widehat A , [ a ( cos B ^ + i sin B ^ ) + b ( cos A ^ i sin A ^ ) ] n = [ a cos B ^ + b cos A ^ ] n = ( a cos B ^ + b cos A ^ ) n = c n \large\begin{aligned}\Re\left[a(\cos \widehat B+i\sin \widehat B)+b(\cos \widehat A-i\sin \widehat A)\right]^{\!n}&=\Re\left[a\cos \widehat B+b\cos \widehat A\right]^{\!n}\\&=\left(a\cos \widehat B+b\cos \widehat A\right)^{n}\\&=c^{n} \end{aligned}

r = 0 n [ ( n r ) a r b n r cos ( r B ^ ( n r ) A ^ ) ] = c n \Large \displaystyle\therefore\sum_{r=0}^{n} \left[\binom {n}{r} a^rb^{n-r}\cos\left(r\widehat B - (n-r)\widehat A\right)\right] = c^{n}

Moderator note:

Be careful in your writeup. If you want to replace n n with 50, do it everywhere, otherwise it will be confusing to read.

Complex use of complex

Gauri shankar Mishra - 5 years, 4 months ago

Did same way

Ashutosh Sharma - 3 years, 3 months ago

Just used complex numbers and did it right....

BTW good question

sayantan mondal - 3 years, 3 months ago

Log in to reply

Yup. Thanks!

Kishore S. Shenoy - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...