Binomial Summations 6

Algebra Level 5

If the expansion of ( 1 + x + 2 x 2 ) 20 (1+x+2x^2)^{20} is equal to a 0 + a 1 x + a 2 x 2 + + a 40 x 40 a_0 + a_1 x+ a_2 x^2 + \cdots + a_{40} x^{40} for constants a 0 , a 1 , , a 40 a_0,a_1, \ldots , a_{40} , compute

1 1 0 8 r = 0 19 a 2 r . \left \lceil \dfrac1{10^8} \sum_{r=0}^{19} a_{2r} \right \rceil .


The answer is 5498.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

( 1 + x + 2 x 2 ) 20 = a 0 + a 1 x + a 2 x 2 + + a 40 x 40 Putting x = 1 4 20 = a 0 + a 1 + a 2 + + a 40 Putting x = 1 2 20 = a 0 a 1 + a 2 + a 40 4 20 + 2 20 = 2 a 0 + 2 a 2 + 2 a 4 + + 2 a 40 r = 0 20 a 2 r = 4 20 + 2 20 2 r = 0 19 a 2 r = 2 39 + 2 19 a 40 = 2 39 + 2 19 2 20 = 2 39 2 19 = 5.49755 × 1 0 11 1 1 0 8 r = 0 19 a 2 r = 5498 \begin{aligned} (1+x+2x^2)^{20} & = a_0 + a_1 x + a_2 x^2 + \cdots + a_{40} x^{40} & \small \color{#3D99F6}{\text{Putting }x=1} \\ 4^{20} & = a_0 + a_1 + a_2 + \cdots + a_{40} & \small \color{#3D99F6}{\text{Putting }x=-1} \\ 2^{20} & = a_0 - a_1 + a_2 - \cdots + a_{40} \\ \implies 4^{20} + 2^{20} & = 2a_0 + 2a_2 + 2a_4 + \cdots + 2a_{40} \\ \implies \sum_{r=0}^{20} a_{2r} & = \frac {4^{20} + 2^{20}}2 \\ \sum_{r=0}^{\color{#3D99F6}{19}} a_{2r} & = 2^{39}+2^{19} - a_{40} \\ & = 2^{39}+2^{19} - 2^{20} \\ & = 2^{39}-2^{19} \\ & = 5.49755 \times 10^{11} \\ \implies \left \lceil \frac 1{10^8} \sum_{r=0}^{19} a_{2r} \right \rceil & = \boxed{5498} \end{aligned}

In my addition I made an error of 1 ! But my method was long.
N o t e t h a t a 2 r i s s u m o f s e v e r a l t e r m s . A l s o N ! a ! = N ! ( N a ) ! 1 1 0 8 r = 0 19 a 2 r = 1 1 0 8 r = 0 10 k = 0 r 20 ! ( r k ) ! ( 2 k ) ! ( 20 r k ) ! ( 2 r k + 2 20 r k ) ( 1 r 10 ) ) = 5498. ( 1 r 10 ) i s u s e d s i n c e r = 10 i s m i d d l e t e r m h a v i n g n o p a i r i n g . Note~ that~a_{2r} ~is ~sum ~of~several ~terms.~~ Also~\dfrac{N!}{a!}=\dfrac{N!}{(N-a)!}\\ \displaystyle \left \lceil \dfrac1{10^8} \sum_{r=0}^{19} a_{2r} \right \rceil \\ \displaystyle = \left \lceil~~ \dfrac1 {10^8} \sum_{r=0}^{10} \displaystyle \sum_{k=0}^r \dfrac{20!}{(r-k)!*(2*k)!*(20-r-k)!}*\left (2^{r-k} +2^{20-r-k})*\left (1- \left \lfloor \dfrac r {10} \right \rfloor \right ) \right ) ~~ \right \rceil ~~=\color{#D61F06}{5498.} \\ \left (1- \left \lfloor \dfrac r {10} \right \rfloor \right ) ~~is ~used ~since~~ r=10~is~middle~term~having ~no ~pairing.

Niranjan Khanderia - 3 years, 2 months ago
Abu Zubair
Nov 4, 2015

PUT

X=1.................(1)

X=-1................(2)

THEN ADD (2) AND (1)

DIVIDE RESULT BY '2'

SUBTRACT a 40 a_{40} FROM IT(i.e 2 20 2^{20} )

divide it by 1 0 8 10^{8}

I Think It Is The Easiest Problem Of The Set And Also Has The Highest Rating !!

Prakhar Bindal - 5 years, 7 months ago

Log in to reply

Did the same way. Made a mistake in estimating the ceiling function.

Put my first two answers as 5496,5497 :/

Then put 5498 and got it right.

A Former Brilliant Member - 5 years, 6 months ago

Log in to reply

I put 5497, it showed incorrect.So i just gave it up!!!!1

Sathya NC - 5 years, 4 months ago

This is incorrect. You have only shown that it's true for x = ± 1 x=\pm 1 , when the question states that we're looking for all real x x .

Pi Han Goh - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...