Binomial Theorem

Algebra Level 3

( x 2 1 3 x ) 18 + ( 37 32 x ) 2 ( 2 x 99 + 3 15 ) + ( 2 x 3 3 x ) 14 (x^2-1-3x)^{18}+(37-32x)^2-(2x^{99}+3^{15})+(2x^3-3x)^{14}

If the sum of all the coefficients of the polynomial above is C C , then find C 2 C-2 .

25 ( 3 10 2 ) 14 25(3^{10}-2)-14 0 0 25 C 2 25-C^2 25 25 3 15 2 3^{15}-2 3 15 3^{15} 3 14 2 3^{14}-2 25 ( 3 15 + 1 ) + 3 15 3 25(3^{15}+1)+3^{15}-3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Jesse Nieminen
Oct 9, 2016

We use the fact that for any polynomial p ( x ) p\left(x\right) , the sum of the coefficients is equal to p ( 1 ) p(1) . (Exercise: Prove this fact)

Let's now define P ( x ) = ( x 2 1 3 x ) 18 + ( 37 32 x ) 2 ( 2 x 99 + 3 15 ) + ( 2 x 3 3 x ) 14 P\left(x\right) = (x^2-1-3x)^{18}+(37-32x)^2-(2x^{99}+3^{15})+(2x^3-3x)^{14}

P ( 1 ) = ( 1 2 1 3 1 ) 18 + ( 37 32 1 ) 2 ( 2 1 99 + 3 15 ) + ( 2 1 3 3 1 ) 14 = 3 18 + 5 2 2 3 15 + 1 = 27 3 15 3 15 + 25 3 + 2 = 25 ( 3 15 + 1 ) + 3 15 3 + 2 = C \begin{aligned} P\left(1\right) &= (1^2-1-3\cdot1)^{18}+(37-32\cdot1)^2-(2\cdot1^{99}+3^{15})+(2\cdot1^3-3\cdot1)^{14} \\ &=3^{18}+5^2-2-3^{15}+1 \\ &=27\cdot3^{15} - 3^{15} + 25 - 3 + 2 \\ &=25\left(3^{15} + 1\right) + 3^{15} - 3 + 2 \\ &=C \end{aligned}

Hence, C 2 = 25 ( 3 15 + 1 ) + 3 15 3 C - 2 = 25\left(3^{15} + 1\right) + 3^{15} - 3 , and since other choices clearly are smaller, this one must be the only correct answer.

The complete solution.

Anandmay Patel - 4 years, 8 months ago
Prince Loomba
Oct 9, 2016

Put x=1, the sum of all the terms is equal to the sum of coefficients as no coefficient is altered. Answer is clear.

Anandmay Patel
Oct 9, 2016

HINT: \textbf{HINT:} Rather than expanding the expression through binomial theorem,just put \text{Rather than expanding the expression through binomial theorem,just put} x = 1 x=1 in the expression \text{in the expression} . Wondering why?Think! \text{Wondering why?Think!}

Our answers combined give the solution!

Prince Loomba - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...