binomial theorem

Six people travel with two cars owned by two particular people of the six. Each of the car is driven by its owner and the capacity of each car is five people including the driver. How many ways to arrange the passengers in the two cars???

0 24 16 8 12 36

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Info Web
Oct 24, 2020

Lets say the six people are named A,B,2,3,4,5, where A and B are owners of the cars.

Lets say the cars are named BOOM, BLEW.

A is always seated in his car (say BOOM) and B is always seated in his car (say BLEW), now 4 seats in the BOOM and 4 seats in the BLEW are to be filled (distributed) with the rest of the people (2,3,4,5). '2' can be thrown in any of the two cars in two ways. '3' can be similarly thrown in any of the two cars in two ways. So (2)(2)(2)(2) no of ways to throw them into their seats (for the four people)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...