Binomial + Trigo + Complex!

Algebra Level 5

n C 0 n C 2 ( 2 + 3 ) 2 + n C 4 ( 2 + 3 ) 4 n C 6 ( 2 + 3 ) 6 + + n C n ( 2 + 3 ) n ^n C_0 - \frac {^n C_2}{ (2 + \sqrt 3)^2} + \frac {^n C_4}{ (2 + \sqrt 3)^4} - \frac {^n C_6}{ (2 + \sqrt 3)^6} + \ldots + \frac{^n C_n}{(2+\sqrt 3)^n}

Let a C b ^a C_b denote the binomial coefficient ( a b ) {a \choose b} , and for any positive integer n = 12 m n=12m , the expression above equals to ( 1 ) m ( P 1 + Q ) n \displaystyle (-1)^m \left ( \frac{ \sqrt P}{ 1 + \sqrt Q} \right )^n , where P P and Q Q are positive integers.

Find the value of P Q P-Q .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

We know that, for even n n ,

( 1 + x i ) n = n C 0 + n C 1 x i n C 2 x 2 n C 3 x 3 i + n C 4 x 4 + . . . + ( 1 ) n 2 n C n x n Taking the real part { ( 1 + x i ) n } = n C 0 n C 2 x 2 + n C 4 x 4 n C 6 x 6 + . . . + ( 1 ) n 2 n C n x n Putting x = 1 2 + 3 { ( 1 + i 2 + 3 ) n } = n C 0 n C 2 ( 2 + 3 ) 2 + n C 4 ( 2 + 3 ) 4 n C 6 ( 2 + 3 ) 6 + . . . + ( 1 ) n 2 n C n ( 2 + 3 ) n \begin{aligned} (1+xi)^n & = ^nC_0 + ^n C_1 xi - ^nC_2 x^2 - ^nC_3 x^3i + ^nC_4 x^4 + ... +(-1)^{\frac n2 \ n}C_n x^n & \small \color{#3D99F6}{\text{Taking the real part}} \\ \Re \left \{(1+xi)^n \right \} & = ^nC_0 - ^nC_2 x^2 + ^nC_4 x^4 - ^nC_6 x^6 + ... +(-1)^{\frac n2 \ n}C_n x^n & \small \color{#3D99F6}{\text{Putting } x= \frac 1{2+\sqrt 3}} \\ \Re \left \{\left(1+\frac i{2+\sqrt 3}\right)^n \right \} & = ^nC_0 - \frac {^nC_2}{(2+\sqrt 3)^2} + \frac {^nC_4}{(2+\sqrt 3)^4} - \frac {^nC_6}{(2+\sqrt 3)^6} + ... +\frac {(-1)^{\frac n2 \ n}C_n}{(2+\sqrt 3)^n} \end{aligned}

Therefore, the sum is given by:

S = { ( 1 + i 2 + 3 ) n } = { ( 1 + 1 ( 2 + 3 ) 2 ) n e n tan 1 1 2 + 3 i } = { ( 8 4 3 ) n e n π 12 i } = { ( 8 1 + 3 ) n ( cos n π 12 + i sin n π 12 ) } = ( 8 1 + 3 ) n cos n π 12 = cos ( m π ) ( 8 1 + 3 ) n = ( 1 ) m ( 8 1 + 3 ) n \begin{aligned} S & = \Re \left \{\left(1+\frac i{2+\sqrt 3}\right)^n \right \} \\ & = \Re \left \{\left(\sqrt{1+\frac 1{(2+\sqrt 3)^2}}\right)^n e^{n \tan^{-1} \frac 1{2+\sqrt 3}i} \right \} \\ & = \Re \left \{\left(\sqrt{8-4\sqrt 3}\right)^n e^{\frac {n \pi}{12}i} \right \} \\ & = \Re \left \{\left(\frac {\sqrt 8}{1+\sqrt 3} \right)^n \left(\cos \frac {n \pi}{12} + i \sin \frac {n \pi}{12} \right) \right \} \\ & = \left(\frac {\sqrt 8}{1+\sqrt 3} \right)^n \cos \frac {n \pi}{12} \\ & = \cos (m \pi) \left(\frac {\sqrt 8}{1+\sqrt 3} \right)^n \\ & = (-1)^m \left(\frac {\sqrt 8}{1+\sqrt 3} \right)^n \end{aligned}

P Q = 8 3 = 5 \implies P-Q = 8-3 = \boxed{5}

Arturo Presa
Jul 28, 2015

First we can notice that tan p i 12 = sin p i 12 cos p i 12 = sin p i 12 2 cos p i 12 2 cos 2 p i 12 = sin π 6 1 + cos π 6 = 1 2 1 + 3 2 = 1 2 + 3 \tan \frac{pi}{12}=\frac{\sin \frac{pi}{12}}{\cos\frac{pi}{12}}=\frac{\sin \frac{pi}{12}*2\cos\frac{pi}{12}}{2\cos^{2}\frac{pi}{12}}=\frac{\sin \frac{\pi}{6}}{1+\cos\frac{\pi}{6}}=\frac{\frac{1}{2}}{1+\frac{\sqrt 3}{2}}=\frac{1}{2+\sqrt 3} . Using that sin π 12 cos π 12 = 1 2 + 3 \frac{\sin \frac{\pi}{12}}{\cos\frac{\pi}{12}}=\frac{1}{2+\sqrt 3} and sin 2 π 12 + cos 2 π 12 = 1 , \sin^2 \frac{\pi}{12}+\cos^2 \frac{\pi}{12}=1, we can also verify that cos π 12 = 1 + 3 2 2 \cos \frac{\pi}{12}= \frac{1+\sqrt 3 }{2\sqrt 2 } and sin π 12 = 3 1 2 2 . \sin \frac{\pi}{12}= \frac{\sqrt {3} -1}{2\sqrt 2}.

Assuming that n = 12 m n=12m , where m m is any positive integer, we have the following

k = 0 k = n 2 ( 1 ) k ( n 2 k ) 1 ( 2 + 3 ) 2 k = k = 0 k = n 2 ( 1 ) k ( n 2 k ) tan 2 k π 12 \sum_{k=0}^{k=\frac{n}{2}}(-1)^{k}{n\choose 2 k} \frac{1}{(2+\sqrt 3 )^{2*k}}=\sum_{k=0}^{k=\frac{n}{2}}(-1)^{k}{n\choose 2k} \tan^{2k}\frac{\pi}{12} = 1 2 ( ( 1 + i tan π 12 ) n + ( 1 i tan π 12 ) n ) =\frac{1}{2}((1+i \tan \frac{\pi}{12})^{n}+(1-i \tan \frac{\pi}{12})^{n}) = 1 2 cos n π 12 ( ( cos π 12 + i sin π 12 ) n + ( cos π 12 i sin π 12 ) n ) =\frac{1}{2\cos^n \frac{\pi}{12}}((\cos \frac{\pi}{12}+i \sin \frac{\pi}{12})^{n}+(\cos\frac{\pi}{12}-i \sin \frac{\pi}{12})^{n}) = 1 2 cos n π 12 ( ( cos n π 12 + i sin n π 12 ) + ( cos n π 12 i sin n π 12 ) ) =\frac{1}{2\cos^n \frac{\pi}{12}}((\cos \frac{n \pi}{12}+i \sin \frac{n\pi}{12})+(\cos \frac{n\pi}{12}-i \sin \frac{n\pi}{12})) = 1 2 cos n π 12 ( 2 cos n π 12 ) = 1 cos n π 12 ( cos m π ) = 1 cos n π 12 ( 1 ) m =\frac{1}{2\cos^n \frac{\pi}{12}}(2\cos \frac{n \pi}{12})=\frac{1}{\cos^n \frac{\pi}{12}}(\cos {m \pi})=\frac{1}{\cos^n \frac{\pi}{12}}(-1)^{m} = ( 1 ) m ( 8 1 + 3 ) n . =(-1)^{m} (\frac{\sqrt{8}}{1+\sqrt{3}})^{n}.

Therefore P Q = 8 3 = 5. P - Q=8 -3 =5.

Kartik Sharma
May 19, 2015

Well, easy peasy. All what you need is observation.

The sum is just the same as - k = 0 n / 2 ( n 2 k ) ( 1 ) k ( 2 + 3 ) 2 k \displaystyle \sum_{k=0}^{n/2}{{n \choose 2k}\frac{{(-1)}^{k}}{{(2+\sqrt{3})}^{2k}}}

= k = 0 n / 2 ( n 2 k ) ( i ) 2 k ( 2 + 3 ) 2 k \displaystyle = \sum_{k=0}^{n/2}{{n \choose 2k}\frac{{(i)}^{2k}}{{(2+\sqrt{3})}^{2k}}}

So, it must be

Re ( ( 1 + ι 2 + 3 ) n ) \displaystyle \text{Re}({(1 + \frac{\iota}{2+\sqrt{3}})}^{n})

Re ( ( 1 + ι ( 2 3 ) ) n ) \displaystyle \text{Re}({(1 + \iota(2-\sqrt{3}))}^{n})

When we change into polar form, we get -

( 6 2 ) ( e π / 12 ι ) n \displaystyle {(\sqrt{6}-\sqrt{2})({e}^{\pi/12\iota})}^{n}

= ( 6 2 ) n ( e π m ι ) \displaystyle = {(\sqrt{6}-\sqrt{2})}^{n}({e}^{\pi m \iota})

= ( 1 ) m ( 2 2 1 + 3 n ) \displaystyle = {(-1)}^{m}({\frac{2\sqrt{2}}{1+\sqrt{3}}}^{n})

You might want to prove tan 1 ( 2 + 3 ) = π / 12 \tan^{-1} (2+\sqrt{3}) = \pi/12 .

Jake Lai - 6 years ago

The biggest hint was the title itself!!!

Muhammad Mursaleen - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...