n C 0 − ( 2 + 3 ) 2 n C 2 + ( 2 + 3 ) 4 n C 4 − ( 2 + 3 ) 6 n C 6 + … + ( 2 + 3 ) n n C n
Let a C b denote the binomial coefficient ( b a ) , and for any positive integer n = 1 2 m , the expression above equals to ( − 1 ) m ( 1 + Q P ) n , where P and Q are positive integers.
Find the value of P − Q .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
First we can notice that tan 1 2 p i = cos 1 2 p i sin 1 2 p i = 2 cos 2 1 2 p i sin 1 2 p i ∗ 2 cos 1 2 p i = 1 + cos 6 π sin 6 π = 1 + 2 3 2 1 = 2 + 3 1 . Using that cos 1 2 π sin 1 2 π = 2 + 3 1 and sin 2 1 2 π + cos 2 1 2 π = 1 , we can also verify that cos 1 2 π = 2 2 1 + 3 and sin 1 2 π = 2 2 3 − 1 .
Assuming that n = 1 2 m , where m is any positive integer, we have the following
k = 0 ∑ k = 2 n ( − 1 ) k ( 2 k n ) ( 2 + 3 ) 2 ∗ k 1 = k = 0 ∑ k = 2 n ( − 1 ) k ( 2 k n ) tan 2 k 1 2 π = 2 1 ( ( 1 + i tan 1 2 π ) n + ( 1 − i tan 1 2 π ) n ) = 2 cos n 1 2 π 1 ( ( cos 1 2 π + i sin 1 2 π ) n + ( cos 1 2 π − i sin 1 2 π ) n ) = 2 cos n 1 2 π 1 ( ( cos 1 2 n π + i sin 1 2 n π ) + ( cos 1 2 n π − i sin 1 2 n π ) ) = 2 cos n 1 2 π 1 ( 2 cos 1 2 n π ) = cos n 1 2 π 1 ( cos m π ) = cos n 1 2 π 1 ( − 1 ) m = ( − 1 ) m ( 1 + 3 8 ) n .
Therefore P − Q = 8 − 3 = 5 .
Well, easy peasy. All what you need is observation.
The sum is just the same as - k = 0 ∑ n / 2 ( 2 k n ) ( 2 + 3 ) 2 k ( − 1 ) k
= k = 0 ∑ n / 2 ( 2 k n ) ( 2 + 3 ) 2 k ( i ) 2 k
So, it must be
Re ( ( 1 + 2 + 3 ι ) n )
Re ( ( 1 + ι ( 2 − 3 ) ) n )
When we change into polar form, we get -
( 6 − 2 ) ( e π / 1 2 ι ) n
= ( 6 − 2 ) n ( e π m ι )
= ( − 1 ) m ( 1 + 3 2 2 n )
You might want to prove tan − 1 ( 2 + 3 ) = π / 1 2 .
The biggest hint was the title itself!!!
Problem Loading...
Note Loading...
Set Loading...
We know that, for even n ,
( 1 + x i ) n ℜ { ( 1 + x i ) n } ℜ { ( 1 + 2 + 3 i ) n } = n C 0 + n C 1 x i − n C 2 x 2 − n C 3 x 3 i + n C 4 x 4 + . . . + ( − 1 ) 2 n n C n x n = n C 0 − n C 2 x 2 + n C 4 x 4 − n C 6 x 6 + . . . + ( − 1 ) 2 n n C n x n = n C 0 − ( 2 + 3 ) 2 n C 2 + ( 2 + 3 ) 4 n C 4 − ( 2 + 3 ) 6 n C 6 + . . . + ( 2 + 3 ) n ( − 1 ) 2 n n C n Taking the real part Putting x = 2 + 3 1
Therefore, the sum is given by:
S = ℜ { ( 1 + 2 + 3 i ) n } = ℜ { ( 1 + ( 2 + 3 ) 2 1 ) n e n tan − 1 2 + 3 1 i } = ℜ { ( 8 − 4 3 ) n e 1 2 n π i } = ℜ { ( 1 + 3 8 ) n ( cos 1 2 n π + i sin 1 2 n π ) } = ( 1 + 3 8 ) n cos 1 2 n π = cos ( m π ) ( 1 + 3 8 ) n = ( − 1 ) m ( 1 + 3 8 ) n
⟹ P − Q = 8 − 3 = 5