Binomially Amazing! #2

Calculus Level 5

r = 0 1729 ( 1 ) r ( 1729 r ) 4 r + 2 = 2 a ( b ! ) c ( d ! ) \sum _{ r=0 }^{ 1729 }{ \frac { { \left( -1 \right) }^{ r }\left( \begin{matrix} 1729 \\ r \end{matrix} \right) }{ 4r+2 } } ={ 2 }^{ a }\frac { { \left( b! \right) }^{ c } }{ \left( d! \right) }

The equation above holds true for integers a , b , c a,b,c and d d . Find the value of a + b + c + d a+b+c+d ,


The answer is 8647.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Malusare
Dec 5, 2015

We start with the identity ( 1 x 2 ) 1729 = r = 0 1729 ( 1 ) r ( 1729 r ) x 2 r (1-x^2)^{1729} = \displaystyle\sum_{r=0}^{1729} (-1)^{r} \dbinom{1729}{r} x^{2r}

Observe that r = 0 1729 ( 1 ) r ( 1729 r ) 4 r + 2 \displaystyle\sum_{r=0}^{1729} \dfrac{(-1)^{r} \dbinom{1729}{r}}{4r + 2} is equal to the expression 1 2 0 1 ( 1 x 2 ) 1729 d x \dfrac{1}{2}\int_0^1 (1-x^2)^{1729}dx

Let I ( m , n ) = 0 1 ( x 2 ) m ( 1 x 2 ) n d x I(m, n) = \displaystyle\int_0^1 (x^2)^m (1-x^2)^{n}dx

Here, I ( m , n ) = 2 n 2 m + 1 I ( m + 1 , n 1 ) I(m, n) = \dfrac{2n}{2m + 1} I(m + 1, n - 1)

Applying this relation successively and multiplying the expressions together, we get I ( 0 , 1729 ) = 2 1729 1729 ! ( 2 ( 1728 ) + 1 ) ! ! I ( 1729 , 0 ) I(0, 1729) = 2^{1729} \dfrac{1729!}{(2(1728) + 1)!!} I(1729, 0)

After some manipulations, this becomes I ( 0 , 1729 ) = 2 3458 ( 1729 ! ) 2 3459 ! I(0, 1729) = 2^{3458} \dfrac{(1729!)^2}{3459!}

Now, the required expression is 1 2 0 1 ( 1 x 2 ) 1729 d x \dfrac{1}{2}\displaystyle\int_0^1 (1-x^2)^{1729}dx which is equal to 1 2 I ( 0 , 1729 ) \dfrac{1}{2} I(0, 1729)

Hence, the final expression is r = 0 1729 ( 1 ) r ( 1729 r ) 4 r + 2 = 2 3457 ( 1729 ! ) 2 3459 ! \displaystyle\sum_{r=0}^{1729} \dfrac{(-1)^{r} \dbinom{1729}{r}}{4r + 2} = 2^{3457} \dfrac{(1729!)^2}{3459!}

WoW! This is great

Pi Han Goh - 5 years, 6 months ago

The exponent of 2 - the 'a' - should be 3457. 'b', 'c' and 'd' are correct. It looks like the 4 and 5 got switched. 3457 + 1729 + 2 + 3459 = 8647 3457+1729+2+3459 = 8647 Nice solution - just two tiny typos during LaTeXing.

I went ahead and fixed the two spots - I hope that's OK Aditya Malusare.

Bob Kadylo - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...