Binomials and Limits

Calculus Level 4

Define a relation f : Z + R + f:\Bbb{Z^+}\mapsto\Bbb{R^+} given by:

f ( n ) = 4 n ( 2 n n ) ( 4 n 2 n ) f(n)=4^n\cdot \frac{\dbinom{2n}{n}}{\dbinom{4n}{2n}}

Find the value of the following limit:

lim n f ( n ) \lim_{n\to\infty}f(n)

This problem is not original. It is taken from a question posted on MSE.
e 1 e^{-1} 1729 1729 e e 1 e^{e^{-1}} 3 \sqrt{3} π \sqrt{\pi} 5 \sqrt{5} 2 \sqrt{2} π \pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Prasun Biswas
Apr 15, 2015

The central binomial coefficient has the following asymptotic property:

n ( 2 n n ) 4 n π n n\to\infty\implies \binom{2n}{n}\sim \frac{4^n}{\sqrt{\pi n}}

This result comes directly from Stirling's approximation as follows:

n n ! 2 π n ( n e ) n ( 2 n n ) = ( 2 n ) ! ( n ! ) 2 4 π n ( 2 n e ) 2 n { 2 π n ( n e ) n } 2 = 4 n 2 π n ( n e ) 2 n 2 π n ( n e ) 2 n = 4 n π n n\to\infty \implies n!\sim \sqrt{2\pi n}\left(\frac{n}{e}\right)^n\\ \implies\binom{2n}{n}=\frac{(2n)!}{(n!)^2}\sim~\frac{\sqrt{4\pi n}\left(\dfrac{2n}{e}\right)^{2n}}{\left\{\sqrt{2\pi n}\left(\dfrac{n}{e}\right)^n\right\}^2}=\frac{4^n\cdot 2\sqrt{\pi n}\left(\dfrac{n}{e}\right)^{2n}}{2\pi n\left(\dfrac{n}{e}\right)^{2n}}=\frac{4^n}{\sqrt{\pi n}}

( 2 n n ) 4 n π n as n \implies \binom{2n}{n}\sim \frac{4^n}{\sqrt{\pi n}}\textrm{ as }n\to\infty

Similarly, it can be obtained that,

n ( 4 n 2 n ) 4 2 n 2 π n n\to\infty\implies \binom{4n}{2n}\sim \frac{4^{2n}}{\sqrt{2\pi n}}

Use these approximations to rewrite the original limit as,

lim n f ( n ) = lim n ( 4 n 4 n 2 π n 4 2 n π n ) = 2 \lim_{n\to\infty}f(n)=\lim_{n\to\infty}\left(\frac{4^n\cdot 4^n\cdot \sqrt{2\pi n}}{4^{2n}\cdot \sqrt{\pi n}}\right)=\sqrt2

@Prasun Biswas Exactly the same!!!!! +1

Aaghaz Mahajan - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...