Binomial's Brother

Calculus Level 4

r = 1 k + l ( 1 ) r 1 ( k + r 1 ) ! ( ( r 1 ) ! ) 2 ( k r + l ) ! = ? \sum_{r=1}^{k+l} \frac{(-1)^{r-1}(k+r-1)!}{((r-1)!)^2(k-r+l)!} = \ ? NOTE: l 2 l\geq2


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Nov 23, 2019

Note that F ( k , ) = r = 1 k + ( 1 ) r 1 ( k + r 1 ) ! ( ( r 1 ) ! ) 2 ( k r + ) ! = r = 0 k + 1 ( 1 ) r ( k + r ) ! ( r ! ) 2 ( k + 1 r ) ! = 1 ( k + 1 ) ! r = 0 k + 1 ( 1 ) r ( k + 1 r ) ( k + r ) ! r ! = 1 ( k + 1 ) ! r = 0 k + 1 ( 1 ) r ( k + 1 r ) d k d x k x r + k x = 1 = 1 ( k + 1 ) ! d k d x k ( r = 0 k + 1 ( 1 ) r ( k + 1 r ) x r + k ) x = 1 = 1 ( k + 1 ) ! d k d x k ( x k ( 1 x ) k + 1 ) x = 1 \begin{aligned} F(k,\ell) & = \; \sum_{r=1}^{k+\ell}\frac{(-1)^{r-1}(k+r-1)!}{((r-1)!)^2(k-r+\ell)!} \\ & = \; \sum_{r=0}^{k+\ell-1} \frac{(-1)^r (k+r)!}{(r!)^2(k+\ell-1 - r)!} \; = \; \frac{1}{(k+\ell-1)!}\sum_{r=0}^{k+\ell-1}(-1)^r \binom{k+\ell-1}{r}\frac{(k+r)!}{r!} \\ & = \; \frac{1}{(k+\ell-1)!}\sum_{r=0}^{k+\ell-1} (-1)^r \binom{k+\ell-1}{r} \frac{d^k}{dx^k}x^{r+k} \Big|_{x=1} \; = \; \frac{1}{(k+\ell-1)!}\frac{d^k}{dx^k}\left(\sum_{r=0}^{k+\ell-1}(-1)^r\binom{k+\ell-1}{r}x^{r+k}\right)\Big|_{x=1} \\ & = \; \frac{1}{(k+\ell-1)!}\frac{d^k}{dx^k}\left(x^k(1-x)^{k+\ell-1}\right)\Big|_{x=1} \end{aligned} If 2 \ell \ge 2 , then all terms in the k k th derivative of x k ( 1 x ) k + 1 x^k(1-x)^{k+\ell-1} will contain 1 x 1-x as a factor, and hence F ( k , ) = r = 1 k + ( 1 ) r 1 ( k + r 1 ) ! ( ( r 1 ) ! ) 2 ( k r + ) ! = 0 F(k,\ell) \; = \; \sum_{r=1}^{k+\ell}\frac{(-1)^{r-1}(k+r-1)!}{((r-1)!)^2(k-r+\ell)!} \; =\; \boxed{0} which is the desired answer. However, there are some special cases which are worth noting. If = 1 \ell=1 then F ( k , 1 ) = 1 k ! d k d x k ( x k ( 1 x ) k ) x = 1 = 1 k ! ( x k d k d x k ( 1 x ) k ) x = 1 = ( 1 ) k F(k,1) \; = \; \frac{1}{k!}\frac{d^k}{dx^k}\left(x^k(1-x)^k\right)\Big|_{x=1} \; = \; \frac{1}{k!} \left(x^k \frac{d^k}{dx^k}(1-x)^k\right)\Big|_{x=1} \; = \; (-1)^k If = 0 \ell=0 then F ( k , 0 ) = 1 ( k 1 ) ! d k d x k ( x k ( 1 x ) k 1 ) x = 1 = 1 ( k 1 ) ! ( k × d d x x k × d k 1 d x k 1 ( 1 x ) k 1 ) x = 1 = ( 1 ) k 1 k 2 F(k,0) \; = \; \frac{1}{(k-1)!}\frac{d^k}{dx^k}\left(x^k(1-x)^{k-1}\right)\Big|_{x=1} \; = \; \frac{1}{(k-1)!}\left(k \times \frac{d}{dx}x^k \times \frac{d^{k-1}}{dx^{k-1}}(1-x)^{k-1}\right)\Big|_{x=1} \; = \; (-1)^{k-1}k^2

Thank You , please see the Edit

Mrigank Shekhar Pathak - 1 year, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...