This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Note that F ( k , ℓ ) = r = 1 ∑ k + ℓ ( ( r − 1 ) ! ) 2 ( k − r + ℓ ) ! ( − 1 ) r − 1 ( k + r − 1 ) ! = r = 0 ∑ k + ℓ − 1 ( r ! ) 2 ( k + ℓ − 1 − r ) ! ( − 1 ) r ( k + r ) ! = ( k + ℓ − 1 ) ! 1 r = 0 ∑ k + ℓ − 1 ( − 1 ) r ( r k + ℓ − 1 ) r ! ( k + r ) ! = ( k + ℓ − 1 ) ! 1 r = 0 ∑ k + ℓ − 1 ( − 1 ) r ( r k + ℓ − 1 ) d x k d k x r + k ∣ ∣ ∣ x = 1 = ( k + ℓ − 1 ) ! 1 d x k d k ( r = 0 ∑ k + ℓ − 1 ( − 1 ) r ( r k + ℓ − 1 ) x r + k ) ∣ ∣ ∣ x = 1 = ( k + ℓ − 1 ) ! 1 d x k d k ( x k ( 1 − x ) k + ℓ − 1 ) ∣ ∣ ∣ x = 1 If ℓ ≥ 2 , then all terms in the k th derivative of x k ( 1 − x ) k + ℓ − 1 will contain 1 − x as a factor, and hence F ( k , ℓ ) = r = 1 ∑ k + ℓ ( ( r − 1 ) ! ) 2 ( k − r + ℓ ) ! ( − 1 ) r − 1 ( k + r − 1 ) ! = 0 which is the desired answer. However, there are some special cases which are worth noting. If ℓ = 1 then F ( k , 1 ) = k ! 1 d x k d k ( x k ( 1 − x ) k ) ∣ ∣ ∣ x = 1 = k ! 1 ( x k d x k d k ( 1 − x ) k ) ∣ ∣ ∣ x = 1 = ( − 1 ) k If ℓ = 0 then F ( k , 0 ) = ( k − 1 ) ! 1 d x k d k ( x k ( 1 − x ) k − 1 ) ∣ ∣ ∣ x = 1 = ( k − 1 ) ! 1 ( k × d x d x k × d x k − 1 d k − 1 ( 1 − x ) k − 1 ) ∣ ∣ ∣ x = 1 = ( − 1 ) k − 1 k 2