Birthday problem

Algebra Level 4

If x 4 + 4 x 3 + 2 x 2 c + 4 x c 8 x + c 2 4 c + 4 = 0 {x}^{4}+4{x}^{3}+2{x}^{2}c+4xc-8x+{c}^{2}-4c+4 = 0 has all real roots then the maximum value of c is

For more problems click here .

2 4 5 1 6 8 3 7

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

James Wilson
Feb 8, 2018

Let x = y 1 x=y-1 . Then x 4 + 4 x 3 + 2 x 2 c + 4 x c 8 x + c 2 4 c + 4 x^4+4x^3+2x^2c+4xc-8x+c^2-4c+4 = ( y 1 ) 4 + 4 ( y 1 ) 3 + 2 ( y 1 ) 2 c + 4 ( y 1 ) c 8 ( y 1 ) + ( c 2 ) 2 =(y-1)^4+4(y-1)^3+2(y-1)^2c+4(y-1)c-8(y-1)+(c-2)^2 = y 4 4 y 3 + 6 y 2 4 y + 1 + 4 y 3 12 y 2 + 12 y 4 + 2 c y 2 4 c y + 2 c + 4 c y 4 c 8 y + 8 + ( c 2 ) 2 =y^4-4y^3+6y^2-4y+1+4y^3-12y^2+12y-4+2cy^2-4cy+2c+4cy-4c-8y+8+(c-2)^2 = y 4 + 2 ( c 3 ) y 2 + c 2 6 c + 9 =y^4+2(c-3)y^2+c^2-6c+9 = ( y 2 + c 3 ) 2 =(y^2+c-3)^2 Since y y must be real, y 2 = 3 c 0 c 3 y^2=3-c\geq 0\Rightarrow c\leq 3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...