Birthday Problem!

Algebra Level 4

n = 1 6 n 4 n = ? \large\sum _{ n=1 }^{ \infty }{ \frac { 6n }{ { 4 }^{ n } } }= \ ? \

Give your answer to 2 decimal places.


The answer is 2.67.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Akshat Sharda
Dec 5, 2015

n = 1 6 n 4 n = 6 n = 1 n 4 n 6 ( 1 4 + 2 4 2 + 3 4 3 + 4 4 4 + ) Let S = 1 4 + 2 4 2 + 3 4 3 + 4 4 4 + S 4 = 1 4 2 + 2 4 3 + 3 4 4 + 4 4 5 + S S 4 = 1 4 + 1 4 2 + 1 4 3 + 1 4 4 3 S 4 = 1 4 1 1 4 = 1 3 S = 4 3 × 1 3 = 4 9 6 S = 8 3 = 2.66 \displaystyle \sum _{ n=1 }^{ \infty }{ \frac { 6n }{ { 4 }^{ n } } }=6 \displaystyle \sum _{ n=1 }^{ \infty }{ \frac {n }{ { 4 }^{ n } } } \\ 6\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+\ldots \right) \\ \text{Let }S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+\ldots \\ \frac{S}{4}=\frac{1}{4^2}+\frac{2}{4^3}+\frac{3}{4^4}+\frac{4}{4^5}+\ldots \\ S-\frac{S}{4} =\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+\frac{1}{4^4} \\ \frac{3S}{4}=\frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3} \\ S=\frac{4}{3}\times\frac{1}{3}=\frac{4}{9} \\ \therefore 6S=\frac{8}{3}=\boxed{2.66}

Same way........Thumbs up!!!

abc xyz - 5 years, 3 months ago

How do you get from S/4 to 3S/4?

Andy Ennaco - 5 years, 6 months ago

Log in to reply

S S 4 = 3 S 4 S-\frac{S}{4}=\frac{3S}{4}

Akshat Sharda - 5 years, 6 months ago

Log in to reply

Of course! Thank you.

Andy Ennaco - 5 years, 6 months ago
Romeo Gomez
Dec 8, 2015

I made this formula for k>1 n = 1 n k n = k ( k 1 ) 2 , \sum_{n=1}^{\infty}{\frac{n}{k^n}}=\frac{k}{(k-1)^2}, then 6 n = 1 n 4 n = 6 4 3 2 = 8 3 = 2. 6 6\sum_{n=1}^{\infty}{\frac{n}{4^n}=6\frac{4}{3^2}=\frac{8}{3}=2.\overline{6}}

I made other for this n = 1 n p k p \sum_{n=1}^{\infty}{\frac{n^p}{k^p}} but its a recursive formula, I couldn't made a pretty formula like above.

Romeo Gomez - 5 years, 6 months ago
Chan Lye Lee
Dec 6, 2015

Note that 1 1 x = 1 + x + x 2 + x 3 + + x n + , where x < 1 \frac{1}{1-x}=1+x+x^2+x^3+\ldots +x^n +\ldots , \, \, \, \text{where}\, |x|<1 Differentiate it and multiple both sides with x x , we obtain x ( 1 x ) 2 = x + 2 x 2 + 3 x 3 + + n x n + , where x < 1 \frac{x}{(1-x)^2}=x+2x^2+3x^3+\ldots + nx^n + \ldots, \, \, \, \text{where}\, |x|<1

Note that n = 1 6 n 4 n = 6 ( x + 2 x 2 + 3 x 3 + + n x n + , ) where x = 1 4 \sum _{ n=1 }^{ \infty }{ \frac { 6n }{ { 4 }^{ n } } }=6\left( x+2x^2+3x^3+\ldots + nx^n + \ldots,\right)\, \, \, \text{where}\, x=\frac{1}{4}

Hence, n = 1 6 n 4 n = 6 × 1 4 ( 1 1 4 ) 2 = 8 3 \sum _{ n=1 }^{ \infty }{ \frac { 6n }{ { 4 }^{ n } } }=6\times \frac{\frac{1}{4}}{(1-\frac{1}{4})^2}=\frac{8}{3}

Kevin Tran
Oct 18, 2016

The sum is equal to 6 ( 1 4 1 + 1 4 2 + 1 4 3 + 1 4 4 + 1 4 5 + + 1 4 2 + 1 4 3 + 1 4 4 + 1 4 5 + 1 4 6 + + 1 4 3 + 1 4 4 + 1 4 5 + 1 4 6 + 1 4 7 + + ) = 24 { 1 4 1 ( 1 4 1 + 1 4 2 + 1 4 3 + 1 4 4 + 1 4 5 + ) + 1 4 2 ( 1 4 1 + 1 4 2 + 1 4 3 + 1 4 4 + 1 4 5 + ) + 1 4 3 ( 1 4 1 + 1 4 2 + 1 4 3 + 1 4 4 + 1 4 5 + ) + } = 24 ( 1 4 1 + 1 4 2 + 1 4 3 + 1 4 4 + ) ( 1 4 1 + 1 4 2 + 1 4 3 + 1 4 4 + ) = 24 ( n = 1 ( 1 4 ) n ) 2 = 24 ( 1 3 ) 2 = 8 3 2.67 . 6\cdot \left(\frac 1{4^1} + \frac 1{4^2} + \frac 1{4^3} + \frac 1{4^4} + \frac1{4^5} + \cdots \\ +\frac 1{4^2} + \frac 1{4^3} + \frac 1{4^4} + \frac 1{4^5} + \frac1{4^6} + \cdots \\ +\frac 1{4^3} + \frac 1{4^4} + \frac 1{4^5} + \frac 1{4^6} + \frac1{4^7} + \cdots \\ + \cdots\right) \\ = 24 \cdot \left\{ \frac 1{4^1} \cdot \left(\frac 1{4^1} + \frac 1{4^2} + \frac 1{4^3} + \frac 1{4^4} + \frac1{4^5} + \cdots \right) \\ + \frac 1{4^2} \cdot \left(\frac 1{4^1} + \frac 1{4^2} + \frac 1{4^3} + \frac 1{4^4} + \frac1{4^5} + \cdots \right) \\ + \frac 1{4^3} \cdot \left(\frac 1{4^1} + \frac 1{4^2} + \frac 1{4^3} + \frac 1{4^4} + \frac1{4^5} + \cdots \right) \\ + \cdots\right\} \\ = 24 \cdot \left(\frac 1{4^1} + \frac 1{4^2} + \frac 1{4^3} + \frac 1{4^4}+ \cdots\right)\cdot \left(\frac 1{4^1} + \frac 1{4^2} + \frac 1{4^3} + \frac 1{4^4}+ \cdots\right) \\ = 24 \cdot \left(\sum_{n=1}^\infty (\tfrac14)^n\right)^2 = 24\cdot (\tfrac13)^2 = \tfrac83 \approx \boxed{2.67}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...