Bisectors

Geometry Level 5

Let A B C D ABCD be a trapezoid with A B / / C D AB//CD . The bisectors of C D A \angle CDA and D A B \angle DAB meet at E E , the bisectors of A B C \angle ABC and B C D \angle BCD meet at F F , the bisectors of B C D \angle BCD and C D A \angle CDA meet at G, and the bisectors of D A B \angle DAB and A B C \angle ABC meet at H H . Quadrilaterals E A B F EABF and E D C F EDCF have areas 24 24 and 36 36 , respectively, and triangle A B H ABH has area 25 25 .

The area of triangle C D G CDG can be expressed as m n \dfrac{m}{n} , where m , n m,n are coprime positive integers.

Find m + n m+n .


The answer is 263.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ahmed Moh AbuBakr
Aug 19, 2015

Because of the four angle bisectors, perpendiculars dropped on each side are equal to h. x = E F = a n d A B a n d C D . A E F B a n d E D C F a r e t r a p e z o i d s . A r e a Δ E H F = 25 24 = 1 A r e a s Δ A H B Δ E H F = 25 1 = ( A B x ) 2 . A B = 5 x . . . . . . . . . . . . ( ) A r e a s E D C F A E F B = 36 24 = 3 2 = 1 2 h ( x + D C ) 1 2 h ( x + 5 x ) . . . . ( ) D C = 8 x . . . . ( ) Δ s G D C = E D C F + G E F . \text{Because of the four angle bisectors, perpendiculars dropped on each side}\\ \text{are equal to h.}\\ \therefore x=EF=~and~||~AB~ and~CD.\\ \implies~AEFB~and~EDCF~are~ trapezoids.\\ Area~\Delta ~EHF= 25-24=1\\ Areas~\dfrac{\Delta AHB}{\Delta EHF}=\dfrac{25} 1=\left(\dfrac{AB} x \right)^2.\\ \therefore~AB=5x............(*)\\ Areas~\dfrac{EDCF}{AEFB}=\dfrac{36}{24}=\dfrac 3 2 \\ \large =\dfrac {\frac1 2 *h*(x+DC)}{\frac1 2 *h*(x+5x)}....(**)\\ \therefore DC=8x....(***)\\ \Delta s~GDC=EDCF+GEF.\\ A r e a s G D C G E F = 36 + G F F G E F = ( ( 8 x ) 2 x 2 ) \therefore Areas~\dfrac{GDC}{GEF}=\dfrac{36+GFF}{GEF}=\left (\dfrac{(8x)^2}{x^2} \right )\\ S o l v i n g a r e a G E F = 4 7 . A r e a G E C = 36 + 4 7 . = 256 7 = m n . m + n = . . . . . . . 263 Solving~area~GEF=\dfrac4 7.\\ \implies Area~GEC=36+\dfrac 4 7 .=\dfrac{256} 7=\dfrac m n .\\ m+n=.......\Large \color{#D61F06}{263}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...