Degrees And Roots Might Be Independent

Algebra Level 3

Let f ( x ) = x 2 + 10 x + 20 f(x)=x^ 2+10x+20 , find the number of real solutions satisfying f ( f ( f ( f ( x ) ) ) ) = 0 f(f(f(f(x))))=0


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mehul Chaturvedi
Mar 4, 2016

The equation can be written as f ( x ) = ( x + 5 ) 2 5 f(x)=(x+5)^2-5

now f ( f ( x ) ) = ( x + 5 ) 4 5 f ( f ( f ( x ) ) ) = ( x + 5 ) 8 5 f ( f ( f ( f ( x ) ) ) ) = ( x + 5 ) 16 5 = p ( x ) f(f(x))=(x+5)^{ 4 }-5\\ f(f(f(x)))=(x+5)^{ 8 }-5\\ f(f(f(f(x))))=(x+5)^{ 16 }-5=p(x)

It can easily be seen that p ( x ) = 0 p(x)=0 has 2 2 real solns.

Aliter : One can even plot the graph.Its amazing!Really.

Note : We can show that ( x + 5 ) 16 5 = 0 (x+5)^{ 16 }-5 = 0 has only 2 real roots by considering plotting a graph of y = x 16 y = x^{16} and a straight line y = 5 y=5 .

Solutions are more then two, but degenerate in only two values

Riccardo Sabatini - 5 years, 3 months ago
Toni Shani
Mar 6, 2016

f ( x ) = a , f ( f ( x ) ) = f ( a ) = b , f ( f ( f ( x ) ) ) = f ( b ) = c s o f ( f ( f ( f ( x ) ) ) ) = f ( f ( b ) ) = f ( c ) = c 2 + 10 c + 20 = 0 t h e n c 2 + 10 c + 20 = 0 c 1 = ( 5 + 5 ) , c 2 = 5 5 . T h e n w e s o l v e j u s t f o r b a n d w e g e t t w o s o l u t i o n s b e c a u s e t h e e q u a t i o n t s h a v e t h e s a m e r e s u l t o n e h a s t w o r o o t s t h e o t h e r h a s n o r e a l r o o t s s o i n t h e e n d w e h a v e 2 r e a l r o o t s x 1 = ( 5 16 + 5 ) , x 2 = 5 16 5 f\left( x \right) =a\quad ,f\left( f\left( x \right) \right) =f\left( a \right) =b\quad ,\quad f\left( f\left( f\left( x \right) \right) \right) =f\left( b \right) =c\quad \\ so\quad f\left( f\left( f\left( f\left( x \right) \right) \right) \right) =f\left( f\left( b \right) \right) =f\left( c \right) ={ c }^{ 2 }+10c+20=0\\ then\quad { c }^{ 2 }+10c+20=0\quad { c }_{ 1 }=-(5+\sqrt { 5 } )\quad ,{ c }_{ 2 }=\sqrt { 5 } -5\quad .\\ Then\quad we\quad solve\quad just\quad for\quad b\quad and\quad we\quad get\quad two\quad solutions\quad because\quad \\ the\quad equationts\quad have\quad the\quad same\quad result\quad \\ one\quad has\quad two\quad roots\quad the\quad other\quad has\quad no\quad real\quad roots\quad so\quad in\quad the\quad end\\ \quad we\quad have\quad 2\quad real\quad roots\quad { x }_{ 1 }{ =-(\sqrt [ 16 ]{ 5 } +5),\quad x }_{ 2 }=\sqrt [ 16 ]{ 5 } -5\quad \\

Nice solution and font

Aakash Khandelwal - 5 years, 3 months ago

Same solution!

Aditya Dhawan - 5 years, 3 months ago
Sal Gard
Mar 6, 2016

Let c be a solution to the original expression. Therefore f(c)=f(f(f(f(x)))). Applying this method recursively you get 2 solutions.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...