Black book 6

Geometry Level 4

Let A B C ABC be a given triangle.Points D D and E E are on sides A B AB and A C AC respectively and point F F is on line segment D E DE .Let A D A B = 0.5 \dfrac{AD}{AB}=0.5 , A E A C = . 6 \dfrac{AE}{AC}=.6 , D F D E = . 8 \dfrac{DF}{DE}=.8 Let area of Δ B D F = Δ 1 \Delta BDF = \Delta_1 , area of Δ C E F = Δ 2 \Delta CEF=\Delta_2 and area of Δ A B C = Δ \Delta ABC=\Delta

  • Δ 1 Δ \dfrac{\Delta_1}{\Delta} is equal to P P

  • Δ 2 Δ \dfrac{\Delta_2}{\Delta} is equal to Q Q

Find 2 P + 10 Q {2P+10Q} .


Bones :Generalize it.


The answer is 0.88.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

All triangle pairs with common vertex have, their area are simply in proportion to their base. Let area be shown as [XYZ]. Take Δ [ A F E ] = k . S o Δ [ A D F ] = . 8 . 2 k = 4 k Δ [ A D E ] = 5 k ; \text{All triangle pairs with common vertex have, their area are simply in proportion to their base.} \\ \text{Let area be shown as [XYZ]. Take } \Delta~ [AFE]= k. ~~So~~\Delta ~[ADF]=\frac{.8}{.2}k =4*k \\ \Delta ~[ADE]=5k;\\ Δ [ D B F ] = . 5 . 5 Δ [ A D F ] = 4 k . D e l t a [ E F C ] = . 4 . 6 Δ [ A F E ] = 2 3 k Δ [ A B C ] Δ [ A D E ] = 1 1 k . 5 . 6 k Δ [ A B C ] = 5 k . 3 = 50 k 3 P = 4 k 50 k 3 = 6 25 . Q = 2 k 3 50 k 3 = 1 25 . 2 P + 10 Q = 12 25 + 10 25 = 0.88 \Delta ~[DBF]=\frac{.5}{.5} *\Delta ~[ADF]=4*k.\\ Delta ~[EFC]=\frac{.4}{.6} *\Delta ~[AFE]=\frac 2 3*k\\ \dfrac{\Delta ~[ABC]}{\Delta ~[ADE]}=\dfrac {1*1k}{.5*.6k} \\ \therefore~\Delta ~[ABC]=\dfrac {5k} {.3}=\dfrac {50k} 3 \\ \therefore ~ P=\dfrac {4k}{\dfrac {50k} 3}=\dfrac 6 {25}.\\ \therefore ~ Q=\dfrac {\frac {2k}3}{\dfrac {50k} 3}=\dfrac 1 {25}.\\ 2P+10Q=\dfrac {12} {25} + \dfrac {10} {25} =0.88

Mayank Chaturvedi
Mar 13, 2016

a , b , c a r e s i d e s o f t r i a n g l e o p p o s i t e t o A , B , C r e s p e c t i v e l y a,b,c\quad are\quad sides\quad of\quad triangle\quad opposite\quad to\quad A,B,C\quad respectively

AE= 6 b 10 \frac{6b}{10} , EB= 4 b 10 \frac{4b}{10} , AD=DC= c 2 \frac{c}{2} The side lengths as shown in the figure can be found by ratios given.

= 1 2 c H ( h e r e H i s t h e h e i g h t o f A B C w i t h b a s e A B ) H = 2 c s i n A = H b = 2 c b E I = s i n A E A = 2 c b 6 b 10 = 6 5 c I n A D E , F J E I A p p l y i n g s i m i l a r i t y , u s i n g D F : F E = 8 : 2 F J = 8 E I 10 = 24 25 c ( F J i s h e i g h t o f D F C ) 1 = 1 2 c 2 F J = 6 25 . \triangle =\frac { 1 }{ 2 } cH\quad (here\quad H\quad is\quad the\quad height\quad of\quad \triangle ABC\quad with\quad base\quad AB)\\ H=\frac { 2\triangle }{ c } \quad \\ sinA=\frac { H }{ b } =\frac { 2\triangle }{ cb } \\ EI=sinA*EA=\frac { 2\triangle }{ cb } *\frac { 6b }{ 10 } =\frac { 6\triangle }{ 5c } \\ In\quad \triangle ADE,\quad FJ\quad ||\quad EI\quad \\ Applying\quad similarity, using DF:FE=8:2\\ FJ=\frac { 8EI }{ 10 } =\frac { 24\triangle }{ 25c } \quad (FJ\quad is\quad height\quad of\quad \triangle DFC)\\ { \triangle }_{ 1 }\quad =\quad \frac { 1 }{ 2 } *\frac { c }{ 2 } *FJ\quad =\quad \frac { 6\triangle }{ 25 } .\\

In the very similar way, we find the area of triangle(EFB) from FG. After finding FG from DH.

2 = 25 . { \triangle }_{ 2 }\quad =\quad \frac { \triangle }{ 25 } .

P = 1 = 6 25 Q = 2 = 1 25 P=\frac { { \triangle }_{ 1 } }{ \triangle } =\frac { 6 }{ 25 } \\ Q=\frac { { \triangle }_{ 2 } }{ \triangle } =\frac { 1 }{ 25 }

2P+10Q=0.88.

We're done!

For generalization the same steps can be followed through variables.

Generalization was bit bulky with six variables : )

Mayank Chaturvedi - 5 years, 3 months ago
Ahmad Saad
Mar 11, 2016

Can u please post the solution in L A T E X LATEX

Mehul Chaturvedi - 5 years, 3 months ago

Log in to reply

I'm sorry, I do not use LATEX .

Ahmad Saad - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...