Black book 8

Algebra Level 4

x = 10 × r = 3 100 1 r 2 4 \large x=10 \times \sum_{r=3}^{100} \dfrac{1}{r^2-4}

Find the value of x \left\lfloor x \right\rfloor .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 11, 2016

x = 10 r = 3 100 1 r 2 4 = 10 r = 3 100 1 ( r 2 ) ( r + 2 ) = 10 r = 3 100 1 4 ( 1 r 2 1 r + 2 ) = 10 4 ( r = 1 98 1 r r = 5 102 1 r ) = 5 2 ( 1 1 + 1 2 + 1 3 + 1 4 1 99 1 100 1 101 1 102 ) = 5.1088 x = 5 \begin{aligned} x & = 10 \sum_{r=3}^{100} \frac{1}{r^2-4} \\ & = 10 \sum_{r=3}^{100} \frac{1}{(r-2)(r+2)} \\ & = 10 \sum_{r=3}^{100} \frac{1}{4} \left(\frac{1}{r-2} - \frac{1}{r+2} \right) \\ & = \frac{10}{4} \left(\sum_{r=1}^{98} \frac{1}{r} - \sum_{r=5}^{102} \frac{1}{r} \right) \\ & = \frac{5}{2} \left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \frac{1}{99} - \frac{1}{100} - \frac{1}{101} - \frac{1}{102} \right) \\ & = 5.1088 \\ \Rightarrow \lfloor x \rfloor & = \boxed{5} \end{aligned}

Sridhar Sri
Mar 15, 2016

good soln. may i know which mathematics software, are you using ?

Aswin T.S. - 5 years, 3 months ago

Log in to reply

Daum equation editor

Sridhar Sri - 5 years, 3 months ago

Log in to reply

thanks.....

Aswin T.S. - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...