Black Holes and the Expanding Universe

Calculus Level 5

In a universe whose geometry can be represented by a spherical shell, two black holes form every quantum of time and the universe expands such that its radius is ( n = 0 t ( 1 ) n 2 n + 1 ( t n ) ) 1 \Bigg(\displaystyle \sum_{n=0}^t \frac {(-1)^n}{2n+1} {t \choose n}\Bigg)^{-1} units at t quanta of time from the beginning (i.e. when t = 0). If the universe originally had 1 black hole and the eventual density of black holes in the universe is ρ \rho black holes per square unit, find the value of 1 ρ \frac {1}{\rho} .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sudeep Salgia
Mar 24, 2014

The radius is given by the expression
r ( t ) = ( n = 0 t ( 1 ) n 2 n + 1 ( t n ) ) 1 r(t) = \bigg(\sum_{n=0}^t \frac{(-1)^n}{2n+1} \binom{t}{n}\bigg)^{-1}

To evaluate the sum involving the combinatoric coefficients, consider the expansion,

( 1 x 2 ) n = r = 0 n ( 1 ) n ( n r ) x 2 r (1-x^2)^n = \sum_{r=0}^n (-1)^n \binom{n}{r} x^{2r} Integrating on both the sides with limits 0 to 1, we get,

0 1 ( 1 x 2 ) n d x = r = 0 n ( 1 ) r ( n r ) 0 1 x 2 r d x \int\limits_0^1 (1-x^2)^n dx = \sum_{r=0}^n (-1)^r \binom{n}{r} \int\limits_0^1x^{2r} dx

0 1 ( 1 x 2 ) n d x = r = 0 n ( 1 ) r 2 r + 1 ( n r ) \Rightarrow \int\limits_0^1 (1-x^2)^n dx = \sum_{r=0}^n \frac{(-1)^r}{2r+1} \binom{n}{r}

The RHS of the above equation is the required sum. Let the LHS be I n I_{n} .Therefore,

I n = 0 1 ( 1 x 2 ) n d x I_{n} = \int\limits_0^1 (1-x^2)^n dx

I n = x ( 1 x 2 ) n 0 1 0 1 ( 2 n ) x 2 ( 1 x 2 ) n 1 d x \Rightarrow I_{n} = \left.x(1-x^2)^n\right|_0^1 - \int\limits_0^1 (-2n)x^2 (1-x^2)^{n-1} dx

I n = 2 n 0 1 ( x 2 1 + 1 ) ( 1 x 2 ) n 1 d x \Rightarrow I_{n} = 2n \int\limits_0^1 (x^2 -1 +1)(1-x^2)^{n-1} dx On rearranging slightly, we obtain,
I n 2 n = I n + I n 1 \frac{I_{n}}{2n} = - I_{n} + I_{n-1}
I n I n 1 = 2 n 2 n + 1 \Rightarrow \frac{I_{n}}{I_{n-1}} = \frac{2n}{2n+1}
Now, Clearly I 0 = 1 I_{0} = 1 . To find I n I_{n} consider the product, r = 1 n I r I r 1 = r = 1 n 2 r 2 r + 1 \prod_{r=1}^n \frac{I_{r}}{I_{r-1}} = \prod_{r=1}^n \frac{2r}{2r+1}

LHS of the above expression evaluates to I n I 0 = I n \frac{I_{n}}{I_{0}} = I_{n} . And, r ( t ) = 1 I t r(t) = \frac{1}{I_{t}} .Thus,
r ( t ) = r = 1 n 2 r + 1 2 r r(t) = \prod_{r=1}^n \frac{2r+1}{2r}
r ( t ) = 3 2 × 5 4 × × 2 t + 1 2 t \Rightarrow r(t) = \frac{3}{2} \times \frac{5}{4} \times \ldots \times \frac{2t+1}{2t}
r ( t ) = 1 × 2 × 3 × 4 × 5 × × 2 t × ( 2 t + 1 ) ( 2 × 4 × × 2 t ) 2 \Rightarrow r(t) = \frac{1\times 2 \times 3 \times 4 \times 5 \times \ldots \times 2t \times (2t+1)}{(2\times 4 \times \ldots \times 2t)^2}
r ( t ) = ( 2 t ) ! ( 2 t + 1 ) 4 t ( t ! ) ( t ! ) \Rightarrow r(t) = \frac{ (2t)!(2t+1) }{ 4^t (t!)(t!) }
r ( t ) = 2 t + 1 4 t ( 2 t t ) \Rightarrow r(t) = \frac{2t+1}{4^t} \binom{2t}{t}

Now, number of black holes = 2 t + 1 2t+1 . Therefore, the number of black holes per unit area can be given as,

ρ = lim t 2 t + 1 4 π ( r ( t ) ) 2 \rho = \lim_{t \to \infty}\frac{2t+1}{ 4\pi (r(t))^2} ρ = lim t 2 t + 1 4 π ( 2 t + 1 4 t ( 2 t t ) ) 2 \rho = \lim_{t \to \infty}\frac{2t+1}{ 4\pi \bigg(\frac{2t+1}{4^t} \binom{2t}{t} \bigg)^2}

Using Stirling approximation , we can write, n ! = 2 π n ( n e ) n n! = \sqrt{2\pi n}\bigg(\frac{n}{e}\bigg)^n and,
( 2 n n ) = ( 2 n ) ! ( n ! ) ( n ! ) \binom{2n}{n} = \frac{(2n)!}{(n!)(n!)}
Therefore,
( 2 t t ) = 4 t π t \binom{2t}{t} = \frac{4^t}{\sqrt{\pi t}}
ρ = lim t 2 t + 1 4 π ( 2 t + 1 4 t × 4 t π t ) 2 \Rightarrow \rho = \lim_{t \to \infty}\frac{2t+1}{ 4\pi \bigg(\frac{2t+1}{4^t} \times \frac{4^t}{\sqrt{\pi t}} \bigg)^2}
On rearranging, we obtain,
ρ = lim t ( 2 t + 1 ) π t 4 π ( 2 t + 1 ) 2 \Rightarrow \rho = \lim_{t \to \infty} \frac{(2t+1)\pi t }{4\pi (2t+1)^2}
Taking limits, we obtain, ρ = 1 8 \boxed{ \rho = \frac{1}{8}}

Great solution!

Cole Coupland - 7 years, 2 months ago

Beautifully done!

Jake Lai - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...