black integration

Calculus Level 3

0 π / 2 tan x 3 d x = ? \large \int_0^{\pi/2} \sqrt[3]{\tan x}\ dx =\ ?


The answer is 1.8137.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Jul 19, 2020

I = 0 π 2 tan x 3 d x = 0 π 2 sin 1 3 x cos 1 3 x d x Beta function B ( m , n ) = 2 0 π 2 sin 2 m 1 x cos 2 n 1 x d x = 1 2 B ( 2 3 , 1 3 ) and B ( m , n ) = Γ ( m ) Γ ( n ) Γ ( m + n ) , Γ ( ) is gamma function. Γ ( 2 3 ) Γ ( 1 3 ) 2 Γ ( 1 ) Note that Γ ( x ) Γ ( 1 x ) = π sin ( π x ) = 2 π 3 2 0 ! = π 3 1.81 and Γ ( n ) = ( n 1 ) ! \begin{aligned} I & = \int_0^\frac \pi 2 \sqrt[3]{\tan x} dx \\ & = \int_0^\frac \pi 2 \sin^\frac 13 x \cos^{-\frac 13} x \ dx & \small \blue{\text{Beta function }\text B(m,n) = 2 \int_0^\frac \pi 2 \sin^{2m-1} x \cos^{2n-1} x\ dx} \\ & = \frac 12 \text B \left(\frac 23, \frac 13 \right) & \small \blue{\text{and }\text B(m,n) = \frac {\Gamma(m)\Gamma(n)}{\Gamma(m+n)}\text{, }\Gamma(\cdot)\text{ is gamma function.}} \\ & \frac \blue{\Gamma\left(\frac 23\right)\Gamma\left(\frac 13\right)}{2\red{\Gamma(1)}} & \small \blue{\text{Note that }\Gamma(x)\Gamma(1-x) = \frac \pi {\sin (\pi x)}} \\ & = \frac \blue{\frac {2\pi}{\sqrt 3}}{2\cdot \red{0!}} = \frac \pi{\sqrt 3} \approx \boxed{1.81} & \small \red{\text{and } \Gamma (n) = (n-1)!} \end{aligned}


References:

Same method Mr.Chew!

Aruna Yumlembam - 10 months, 3 weeks ago
Mark Hennings
Jul 18, 2020

With the substitutions y = tan x y = \tan x and z = y 2 z =y^2 we obtain J = 0 1 2 π tan x 3 d x = 0 y 1 3 1 + y 2 d y = 1 2 0 z 1 3 1 + z d z J \; = \; \int_0^{\frac12\pi} \sqrt[3]{\tan x}\,dx \; = \; \int_0^\infty \frac{y^{\frac13}}{1 + y^2}\,dy \; = \; \tfrac12\int_0^\infty \frac{z^{-\frac13}}{1 + z}\,dz so that J = 1 2 B ( 2 3 , 1 3 ) = π 2 sin ( 1 3 π ) = π 3 J \; = \; \tfrac12B(\tfrac23,\tfrac13) \; =\; \frac{\pi}{2\sin(\frac13\pi)} \; =\; \boxed{\frac{\pi}{\sqrt{3}}}

N. Aadhaar Murty
Oct 19, 2020

From the identity ( proof )

0 π 2 tan x n d x = π 2 sec ( π 2 n ) \int_{0}^{\frac {\pi}{2}} \sqrt [n] {\tan x} dx = \frac {\pi}{2} \sec \left(\frac {\pi}{2n}\right)

The answer is π 2 sec ( π 6 ) 1.8137 \frac {\pi}{2} \cdot \sec \left(\frac {\pi}{6}\right) \approx \boxed {1.8137}

Fletcher Mattox
Jul 18, 2020

So easy to solve.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...