Blast Off!

Derive an equation for escape velocity and calculate the escape velocity of our Sun.

F = G m 1 × m 2 x 2 F= G \cdot \dfrac{m_1 \times m_2}{x^2} , where F F is the gravitational force experienced by two bodies with masses m 1 m_1 and m 2 m_2 and x x is the distance between them.

Details and Assumptions :

  • G = 6.67408 × 1 0 11 m 3 kg 1 s 2 G = 6.67408 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2} .

  • Mass of the sun is 2 × 1 0 30 kg 2\times10^{30} \text{ kg} .

  • Radius of the sun is 696.3 × 1 0 6 m 696.3 \times10^6 \text{ m} .

11.18 km/s 617.5 m/s 617.5 km/s 200 km/s

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

W e k n o w t h a t F = G m 1 × m 2 x 2 A s m a l l w o r k d o n e d W = F d x R d W = R F d x W = R G m 1 × m 2 x 2 d x = G m 1 m 2 R 1 x 2 d x W = G m 1 m 2 [ 1 x ] R = G m 1 m 2 [ 1 1 R ] W = G m 1 × m 2 R T o o v e r c o m e t h i s w o r k d o n e b y g r a v i t y , a n e q u a l k i n e t i c e n e r g y s h o u l d b e a p p l i e d K . E . = W 1 2 m 2 v 2 = G m 1 × m 2 R , w h e r e v i s t h e v e l o c i t y o f t h e b o d y v 2 = 2 G m R v = v e a n d m = M v e = 2 G M R T o f i n d t h e e s c a p e v e l o c i t y o f t h e S u n v e = 2 × 6.67408 × 10 11 × 2 × 10 30 696.3 × 10 6 617.5 k m / s We\quad know\quad that\quad F=G\quad \frac { { m }_{ 1 }\times { m }_{ 2 } }{ { x }^{ 2 } } \\ A\quad small\quad work\quad done\quad dW=Fdx\\ \int _{ R }^{ \infty }{ dW } =\int _{ R }^{ \infty }{ Fdx } \\ W=\int _{ R }^{ \infty }{ G\quad \frac { { m }_{ 1 }\times { m }_{ 2 } }{ { x }^{ 2 } } dx } =G{ m }_{ 1 }{ m }_{ 2 }\int _{ R }^{ \infty }{ \frac { 1 }{ { x }^{ 2 } } dx } \\ W=G{ m }_{ 1 }{ m }_{ 2 }{ \begin{bmatrix} \frac { -1 }{ x } \end{bmatrix} }_{ R }^{ \infty }=G{ m }_{ 1 }{ m }_{ 2 }\begin{bmatrix} \frac { -1 }{ \infty } -\frac { -1 }{ R } \end{bmatrix}\\ W=G\quad \frac { { m }_{ 1 }\times { m }_{ 2 } }{ { R } } \\ To\quad overcome\quad this\quad work\quad done\quad by\quad gravity,\quad an\quad equal\quad kinetic\quad energy\quad should\quad be\quad applied\\ K.E.=W\\ \cfrac { 1 }{ 2 } { m }_{ 2 }{ v }^{ 2 }=G\quad \frac { { m }_{ 1 }\times { m }_{ 2 } }{ { R } } ,where\quad v\quad is\quad the\quad velocity\quad of\quad the\quad body\\ { v }^{ 2 }=\frac { 2Gm }{ R } \\ v={ v }_{ e }\quad and\quad m=M\\ \therefore \boxed { { v }_{ e }=\sqrt { \frac { 2GM }{ R } } } \\ \\ To\quad find\quad the\quad escape\quad velocity\quad of\quad the\quad Sun\\ { v }_{ e }=\sqrt { \frac { 2\times 6.67408\times { 10 }^{ -11 }\times 2\times { 10 }^{ 30 } }{ 696.3\times { 10 }^{ 6 } } } \cong \boxed { 617.5\quad km/s }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...