Bobsy-Die

Algebra Level 4

Let x 1 , x 2 , x 3 , x 6 x_1,x_2, x_3, \cdots x_6 be real numbers. The following equations hold true { x 1 + 4 x 2 + 9 x 3 + 16 x 4 + 25 x 5 + 36 x 6 = 9 4 x 1 + 9 x 2 + 16 x 3 + 25 x 4 + 36 x 5 + 49 x 6 = 98 9 x 1 + 16 x 2 + 25 x 3 + 36 x 4 + 49 x 5 + 64 x 6 = 987 \begin{cases} x_1+4x_2+9x_3+16x_4+25x_5+36x_6=9 \\ 4x_1+9x_2+16x_3+25x_4+36x_5+49x_6=98 \\ 9x_1+16x_2+25x_3+36x_4+49x_5+64x_6=987\end{cases}

Find the value of 16 x 1 + 25 x 2 + 36 x 3 + 49 x 4 + 64 x 5 + 81 x 6 16x_1+25x_2+36x_3+49x_4+64x_5+81x_6


Obviously the answer is not 9876


The answer is 2676.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Zico Quintina
Jul 6, 2018

Note the three equations can be written as

i = 1 6 i 2 x i = 9 i = 1 6 ( i + 1 ) 2 x i = 98 i = 1 6 ( i + 2 ) 2 x i = 987 \begin{array}{rl} \sum_{i=1}^6 i^2 x_i &= \ \ 9 \\ \\ \sum_{i=1}^6 (i + 1)^2 x_i &= \ \ 98 \\ \\ \sum_{i=1}^6 (i + 2)^2 x_i &= \ \ 987 \end{array}

and the expression we're trying to find the value of as

i = 1 6 ( i + 3 ) 2 x i \begin{array}{rl} \sum_{i=1}^6 (i + 3)^2 x_i & \end{array}

so it makes sense to see whether there is a linear combination of the coefficients in the first three sums which yields the coefficients in the fourth sum.

In other words, can we find α , β \alpha, \beta and γ \gamma such that

α i 2 + β ( i + 1 ) 2 + γ ( i + 2 ) 2 = ( i + 3 ) 2 α i 2 + β ( i 2 + 2 i + 1 ) + γ ( i 2 + 4 i + 4 ) = i 2 + 6 i + 9 i 2 ( α + β + γ ) + i ( 2 β + 4 γ ) + ( β + 4 γ ) = i 2 + 6 i + 9 \begin{array}{rl} \alpha i^2 + \beta (i + 1)^2 + \gamma (i + 2)^2 &= \ \ (i + 3)^2 \\ \\ \alpha i^2 + \beta (i^2 + 2i + 1) + \gamma (i^2 + 4i + 4) &= \ \ i^2 + 6i + 9 \\ \\ i^2 (\alpha + \beta + \gamma) + i (2\beta + 4\gamma) + (\beta + 4\gamma) &= \ \ i^2 + 6i + 9 \end{array}

and equating coefficients quickly yields α = 1 , β = - 3 \alpha = 1, \beta = \text{-}3 and γ = 3 \gamma = 3 . Therefore

i = 1 6 ( i + 3 ) 2 x i = 1 i = 1 6 i 2 x i 3 i = 1 6 ( i + 1 ) 2 x i + 3 i = 1 6 ( i + 2 ) 2 x i = 1 ( 9 ) 3 ( 98 ) + 3 ( 987 ) = 2676 \begin{array}{rl} \sum_{i=1}^6 (i + 3)^2 x_i &= \ \ 1 \cdot \sum_{i=1}^6 i^2 x_i - 3 \cdot \sum_{i=1}^6 (i + 1)^2 x_i + 3 \cdot \sum_{i=1}^6 (i + 2)^2 x_i \\ \\ &= \ \ 1(9) - 3(98) + 3(987) \\ \\ &= \ \ \boxed{2676} \end{array}

Note: This is related to the more general identity

i = 0 n ( - 1 ) n ( n i ) ( x + i ) n 1 = 0 \sum_{i=0}^n (\text{-}1)^n \dbinom{n}{i} (x + i)^{n - 1} = 0

I'm almost certain I've seen this before but am drawing a blank on how to prove it; can anyone point me in the right direction?

The identity is related to 'finite difference',and you can find this topic on wiki.

Haosen Chen - 2 years, 10 months ago
X X
Jul 5, 2018

Let a function be in the form of f ( x ) = x 1 ( x + 1 ) 2 + x 2 ( x + 2 ) 2 + x 3 ( x + 3 ) 2 + x 4 ( x + 4 ) 2 + x 5 ( x + 5 ) 2 + x 6 ( x + 6 ) 2 f(x)=x_1(x+1)^2+x_2(x+2)^2+x_3(x+3)^2+x_4(x+4)^2+x_5(x+5)^2+x_6(x+6)^2

where x 1 , x 2 , . . . , x 6 x_1,x_2,...,x_6 are constants.

So, f ( 0 ) = 9 , f ( 1 ) = 98 , f ( 2 ) = 987 f(0)=9,f(1)=98,f(2)=987 Since f ( x ) f(x) is a 2-degree function,we can find f ( 3 ) = 2676 f(3)=2676

Joseph Newton
Jul 5, 2018

Let there be three constants a , b , c a, b, c such that:

a ( x 1 + 4 x 2 + 9 x 3 + 16 x 4 + 25 x 5 + 36 x 6 ) + b ( 4 x 1 + 9 x 2 + 16 x 3 + 25 x 4 + 36 x 5 + 49 x 6 ) + c ( 9 x 1 + 16 x 2 + 25 x 3 + 36 x 4 + 49 x 5 + 64 x 6 ) = 16 x 1 + 25 x 2 + 36 x 3 + 49 x 4 + 64 x 5 + 81 x 6 a\left(x_1+4x_2+9x_3+16x_4+25x_5+36x_6\right)\\ +b\left(4x_1+9x_2+16x_3+25x_4+36x_5+49x_6\right)\\ \underline{+c\left(9x_1+16x_2+25x_3+36x_4+49x_5+64x_6\right)}\\ =16x_1+25x_2+36x_3+49x_4+64x_5+81x_6

Let us consider one of the terms, x n x_n . Since in the first equation each x n x_n has n 2 n^2 as its coefficient, in the second equation each x n x_n has ( n + 1 ) 2 (n+1)^2 as its coefficient, and so on, we get this general equation for each term:

a n 2 x n + b ( n + 1 ) 2 x n + c ( n + 2 ) 2 x n = ( n + 3 ) 2 x n a n 2 + b ( n + 1 ) 2 + c ( n + 2 ) 2 = ( n + 3 ) 2 a n 2 + b n 2 + 2 b n + b + c n 2 + 4 c n + 4 c = n 2 + 6 n + 9 ( a + b + c ) n 2 + ( 2 b + 4 c ) n + ( b + 4 c ) = n 2 + 6 n + 9 Equating like terms: a + b + c = 1 ( 1 ) 2 b + 4 c = 6 ( 2 ) b + 4 c = 9 ( 3 ) \begin{aligned}an^2x_n+b(n+1)^2x_n+c(n+2)^2x_n&=(n+3)^2x_n\\ \therefore an^2+b(n+1)^2+c(n+2)^2&=(n+3)^2\\ \therefore an^2+bn^2+2bn+b+cn^2+4cn+4c&=n^2+6n+9\\ \therefore (a+b+c)n^2+(2b+4c)n+(b+4c)&=n^2+6n+9\\ \text{Equating like terms:}\\ a+b+c=1\quad(1)\\ 2b+4c=6\quad(2)\\ b+4c=9\quad (3)\end{aligned} Solving these 3 equations simultaneously gives a = 1 , b = 3 , c = 3 a=1, b=-3, c=3 . Now we can simply use these values to find the answer, knowing that summing the given expressions when multiplying by these numbers gives the expression we want: 1 ( 9 ) 3 ( 98 ) + 3 ( 987 ) = 2676 1(9)-3(98)+3(987)=\boxed{2676}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...