Change in normal integrals

Calculus Level 5

0 1 ln ( 1 e x ) d x \large \displaystyle\int _{ 0 }^{ 1 }{ \ln { \left( 1-{ e }^{ \sqrt { x } } \right) \, dx } } The above integral is in the form: a [ Li b ( e c ) + Li d ( e f ) ζ ( g ) + 1 h ] + i π , a\left[\text{Li}_b(e^{-c})+\text{Li}_d(e^{-f}) -\zeta (g)+\frac{1}{h} \right]+i\pi,

where a , b , c , d , f , g a,b,c,d,f,g and h h are positive integers. Find a + b + c + d + f + g + h 2 a+b+c+d+f+g+h-2 .

Notations :

  • Li n ( a ) { \text{Li} }_{ n }(a) denotes the polylogarithm function, Li n ( a ) = k = 1 a k k n . { \text{Li} }_{ n }(a)=\displaystyle\sum _{ k=1 }^{ \infty }{ \frac { { a }^{ k } }{ { k }^{ n } } }.

  • ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .

  • i = 1 i=\sqrt{-1}


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Apr 22, 2016

Working with an appropriate branch of the complex logarithm, 0 1 log ( 1 e x ) d x = 0 1 ln ( e x 1 ) d x + π i = 0 1 { x + ln ( 1 e x ) } d x + π i = 2 3 + 2 0 1 ln ( 1 e u ) u d u + π i = 2 3 + 2 n = 1 1 n 0 1 u e n u d u + π i = 2 3 + 2 n = 1 { 1 n 2 e n + 1 n 3 e n 1 n 3 } + π i = 2 { L i 2 ( e 1 ) + L i 3 ( e 1 ) ζ ( 3 ) + 1 3 } + π i \begin{array}{rcl} \displaystyle \int_0^1 \log\big(1 - e^{\sqrt{x}}\big)\,dx & = & \displaystyle \int_0^1 \ln\big(e^{\sqrt{x}} - 1\big)\,dx + \pi i \; = \; \int_0^1 \left\{ \sqrt{x} + \ln\big(1 - e^{-\sqrt{x}}\big)\right\}\,dx + \pi i \\ & = & \displaystyle \tfrac23 + 2\int_0^1 \ln(1 - e^{-u})\,u\,du + \pi i \; =\; \tfrac23 + 2\sum_{n=1}^\infty \tfrac{1}{n}\int_0^1 ue^{-nu}\,du + \pi i \\ & = & \displaystyle \tfrac23 + 2\sum_{n=1}^\infty \left\{ \tfrac{1}{n^2}e^{-n} + \tfrac{1}{n^3}e^{-n} - \tfrac{1}{n^3}\right\} + \pi i \\ & = & 2\left\{ \mathrm{Li}_2(e^{-1}) + \mathrm{Li}_3(e^{-1}) - \zeta(3) + \tfrac13\right\} + \pi i \end{array} making the answer 2 + 2 + 1 + 3 + 1 + 3 + 3 2 = 13 2+2+1+3+1+3+3-2 = \boxed{13} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...