∫ 0 1 ln ( 1 − e x ) d x The above integral is in the form: a [ Li b ( e − c ) + Li d ( e − f ) − ζ ( g ) + h 1 ] + i π ,
where a , b , c , d , f , g and h are positive integers. Find a + b + c + d + f + g + h − 2 .
Notations :
Li n ( a ) denotes the polylogarithm function, Li n ( a ) = k = 1 ∑ ∞ k n a k .
ζ ( ⋅ ) denotes the Riemann zeta function .
i = − 1
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Working with an appropriate branch of the complex logarithm, ∫ 0 1 lo g ( 1 − e x ) d x = = = = ∫ 0 1 ln ( e x − 1 ) d x + π i = ∫ 0 1 { x + ln ( 1 − e − x ) } d x + π i 3 2 + 2 ∫ 0 1 ln ( 1 − e − u ) u d u + π i = 3 2 + 2 n = 1 ∑ ∞ n 1 ∫ 0 1 u e − n u d u + π i 3 2 + 2 n = 1 ∑ ∞ { n 2 1 e − n + n 3 1 e − n − n 3 1 } + π i 2 { L i 2 ( e − 1 ) + L i 3 ( e − 1 ) − ζ ( 3 ) + 3 1 } + π i making the answer 2 + 2 + 1 + 3 + 1 + 3 + 3 − 2 = 1 3 .